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Introduction Non-Vertex Eigenvalues

A Quantum Graph [BK] consists of:
Metric Graph: G = (V, £) with vertex set V), edge set £ and each edge e has same length /¢

. . : C 2 2
Hamiltonian: Negative second-order derivative on each edge: H : u(z) — —% oIf )\ = (%ﬂ) , k € 7Z applies, then sin(v/ M) = 0 ~» therefore, we cannot use our relation

Neumann-Kirchhoff Conditions: u(x) is continuous on [' and ) %uk(v) = (0 forallv € V
ecé,

2
* Eigenvalues of the form (%ﬁ) , k € Z are called non-vertex eigenvalues

eLet' = (V, &, ¢) be metric graph with edge lengths ¢
e Consider extended graph I, == (V, €, ¢/(k + 1)) that arises from insertion of k artificial vertices
Vertex Eigenvalues and Eigenfunctions oneachedge e € &

km

2
i i i e Every non-vertex eigenvalue A = (7) of metric graph I' with length 7 is vertex eigenvalue of
Relation to combinatorial graph spectrum:

For sin(\/XZ) =+ () ~» A 1s eigenvalue of I corresponding to eigenfunction ¢ defined by extended graph 1y, with k artificial vertices on each edge [AW]

1 , _ Multiplicity of non-vertex eigenvalues: Non-vertex eigenvalues:
Pe = — (<I> (v;) sin(VA( — z)) + @ (v5) sm(\/X:z:)) for all edges ¢ = (v;, v;) T 1\ 2 .
sin(v/\f) The multiplicity of A = (Tﬂ) as an eigen- . "
value of [ is given by °
<~ (3_1'1’ )2_
§ f
. L @
1= (1 — cos(V'\0))is eigenvalue of Ag corresponding to eigenvector & = (¢ (vy),..., (o))" 1 it k=0 . ®
m—n+2 ifkeven
if k odd and I" not biparti (57)*
Rule to calculate Eigenvalues and -vectors: m—=mn il & odd and | not bipartite { .
Any vertex eigenvalue )\ and associated vertex eigenfunction ¢ can be determined as |m—n 2 it k odd and I bipartite (1_n)2 . ° °
f o ®
( 2 _ _ A2 AsAgAs Ag A7 Ag AgArg-e
(%(arccos(l — ) + kﬂ')) for k even where n = [V] and m = |£] of I PR R
)\Mak = 9 1 2 Figure 4: Spectrum of I'5: orange dots represent non-vertex
\ (z(arccos(l —p) — (k+ 1)7T>) for £ odd eigenvalues, blue dots represent vertex eigenvalues

and
! Non-vertex eigenvectors:
(¢ k) () = - (q) (v;) sin ( Akl = 33)) + o (Uj ) Sin ( A kx)) » Since \ = (£X : 1s vertex eigenvalue of [~ eigenfunctions can be determined with eigenvectors
pok) e sin (/X 5) s \ s ¢ 7
of '
where (11, ®) is an eigenpair of Ag with 1 ¢ {0,2} and k € N
. ki 1 - - k . (k7
Ge(x) = O (v;) cos | —x | + D (ve,1) — P (v;) cos w ] |sin [ —x
14 sin (-~ ’ k41 14
Example: k+l

2
where v, ; is first artificial vertex on edge e ~~ find all eigenvectors corresponding to A = (%ﬂ)
Through our relation we get:

3 B N 3 — 3
£Symkq) — (1 — COS \/XE) (I) < (LSymk —_ (1 — COS k _:-16) Z) (I) — O

k+1
e Compute kernel by singular value decomposition [DR]

~ need kernel of the matrix £ symy — (1 — COS k—”@) T.
Figure 1: 4-cycle graph with one inner edge I'4 5 and equilateral edge length ¢ = 1

e D = Degree-Matrix and £ = Laplacian-Matrix

s . . . Tosn L - [d
* Matrix Lg;m, and ® can be written as: Ly, = [ nxn ~V‘€] and ® = [~V]

* Harmonic Laplacian-Matrix A ~ Symmetric Laplacian-Matrix Lgym, Ley Lgg oF

= Spectrum of A and Ly, are identical For dy, we distinguish three cases:

e If £ 1s odd, I' not bipartite ~~ CT)V =0

Harmonic Laplacian-Matrix: Symmetric Laplacian-Matrix: N
oIf £ iseven ~ Oy = ¢-DY?1, forc e R
( 11 —% —% —%\ ( 1 —\/Té —% —\/Té\ o If £ 1s odd, I' is bipartite ~~ CT)y — ¢-DY 2®,,, forc € R and ¥, eigenvector corresponding to
—z —z 6 6 i
Ap =D \f - % 11 5 O1 e p2eplf2 _% 1 _% 0 eigenvalue 2
33 LT3 sym = Tl 1 V6 G -
\_Q 0 _% 1 ) \ \% 6 VG 0 ) By taking advantage of properties from ®y,, computing time can be decreased by roughly 30%
—5 U —% | Singular value decomposition of Solution time in sec.
initial system 142.089
* Eigenvalues of Ly, are new system 103.747
4 D y
w1 =0, pu=1, pug= g, Hq = g Table 1: Time to compute singular value decomposition in Julia for |V| = 5899

* Eigenvectors of L, are
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Non-Vertex Eigenfunctions of 'y 5 for k odd

A =9.869604401089358 A= 88.82643960980423
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* 111 = 0 does not correspond to vertex eigenvalue ~~ sin(0) = 0

Non-Vertex Eigenfunctions of ', 5 for k even

[:'j'—l,ﬂ} 2 A=2.4674011002723386 A =22.206609902451056
A=39.47841760435743 A=39.47841760435743 A=39.47841760435743

* A =61.68502750680849 A=120.90265391334464

Figure 5: Non-Vertex Eigenfunctions of I'y 5 for k even and odd [W]
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