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Introduction
A Quantum Graph [BK] consists of:
Metric Graph: G = (V , E) with vertex set V , edge set E and each edge e has same length ℓ

Hamiltonian: Negative second-order derivative on each edge: H : u(x) 7→ −d2u
dx2

Neumann-Kirchhoff Conditions: u(x) is continuous on Γ and
∑
e∈Ev

d
dxu|e(v) = 0 for all v ∈ V

Vertex Eigenvalues and Eigenfunctions
Relation to combinatorial graph spectrum:
For sin(

√
λℓ) ̸= 0⇝ λ is eigenvalue of Γ corresponding to eigenfunction ϕ defined by

ϕe =
1

sin(
√
λℓ)

(
Φ (vi) sin(

√
λ(ℓ− x)) + Φ

(
vj
)
sin(

√
λx)

)
for all edges e = (vi, vj)

⇐⇒

µ = (1− cos(
√
λℓ)) is eigenvalue of ∆G corresponding to eigenvector Φ = (Φ (v1) , . . . ,Φ (vn))

T

Rule to calculate Eigenvalues and -vectors:
Any vertex eigenvalue λ and associated vertex eigenfunction ϕ can be determined as

λµ,k =


(
1
ℓ(arccos(1− µ) + kπ)

)2
for k even(

1
ℓ(arccos(1− µ)− (k + 1)π)

)2
for k odd

and (
ϕµ,k

)
e
(x) =

1

sin
(√

λµ,kℓ
) (Φ (vi) sin

(√
λµ,k(ℓ− x)

)
+ Φ

(
vj
)
sin

(√
λµ,kx

))
,

where (µ,Φ) is an eigenpair of ∆G with µ /∈ {0, 2} and k ∈ N0
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Figure 1: 4-cycle graph with one inner edge Γ4,5 and equilateral edge length ℓ = 1

• D = Degree-Matrix and L = Laplacian-Matrix

• Harmonic Laplacian-Matrix ∆G ∼ Symmetric Laplacian-Matrix Lsym

⇒ Spectrum of ∆G and Lsym are identical

Harmonic Laplacian-Matrix:

∆G = D−1L =
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Symmetric Laplacian-Matrix:

Lsym = D−1/2LD−1/2 =
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• Eigenvalues of Lsym are

µ1 = 0, µ2 = 1, µ3 =
4

3
, µ4 =

5

3

• Eigenvectors of Lsym are

Φ1 =


1
1
1
1

 , Φ2 =


0
−1
0
1

 , Φ3 =


−1
0
1
0

 , Φ4 =


−2
3
1

−2
3
1


• µ1 = 0 does not correspond to vertex eigenvalue⇝ sin(0) = 0

Figure 2: Vertex Eigenvalues of Γ for k = 0, . . . , 3

Figure 3: Vertex Eigenfunctions of Γ for µ2 for k = 0, . . . , 3 [W]

Non-Vertex Eigenvalues

• Eigenvalues of the form
(
kπ
ℓ

)2
, k ∈ Z are called non-vertex eigenvalues

• If λ =
(
kπ
ℓ

)2
, k ∈ Z applies, then sin(

√
λℓ) = 0⇝ therefore, we cannot use our relation

• Let Γ = (V , E , ℓ) be metric graph with edge lengths ℓ
• Consider extended graph Γ̃k := (Ṽ , Ẽ , ℓ/(k + 1)) that arises from insertion of k artificial vertices

on each edge e ∈ E

• Every non-vertex eigenvalue λ =
(
kπ
ℓ

)2
of metric graph Γ with length ℓ is vertex eigenvalue of

extended graph Γ̃k with k artificial vertices on each edge [AW]

Multiplicity of non-vertex eigenvalues:
The multiplicity of λ =

(
kπ
ℓ

)2
as an eigen-

value of Γ is given by
1 if k = 0

m− n + 2 if k even
m− n if k odd and Γ not bipartite
m− n + 2 if k odd and Γ bipartite

where n = |V| and m = |E| of Γ.

Non-vertex eigenvalues:

Figure 4: Spectrum of Γ̃3: orange dots represent non-vertex
eigenvalues, blue dots represent vertex eigenvalues

Non-vertex eigenvectors:
Since λ =

(
kπ
ℓ

)2
is vertex eigenvalue of Γ̃⇝ eigenfunctions can be determined with eigenvectors

of Γ̃:

ϕe(x) = Φ̃ (vi) cos

(
kπ

ℓ
x

)
+

1

sin
(

k
k+1π

) (
Φ̃
(
ve,1

)
− Φ̃ (vi) cos

(
k

k + 1
π

))
sin

(
kπ

ℓ
x

)

where ve,1 is first artificial vertex on edge e⇝ find all eigenvectors corresponding to λ =
(
kπ
ℓ

)2
Through our relation we get:

L̃symkΦ̃ =
(
1− cos

√
λℓ̃
)
Φ̃ ⇐⇒

(
L̃symk −

(
1− cos

kπ

k + 1
ℓ̃

)
I
)
Φ̃ = 0

⇝ need kernel of the matrix L̃symk −
(
1− cos kπ

k+1ℓ̃
)
I.

• Compute kernel by singular value decomposition [DR]

• Matrix L̃symk and Φ̃ can be written as: L̃symk =

[
In×n L̃VE
L̃EV L̃EE

]
and Φ̃ =

[
Φ̃V
Φ̃E

]
For Φ̃V we distinguish three cases:

• If k is odd, Γ not bipartite⇝ Φ̃V ≡ 0

• If k is even⇝ Φ̃V = c · D1/21, for c ∈ R
• If k is odd, Γ is bipartite ⇝ Φ̃V = c · D1/2Φn, for c ∈ R and Φn eigenvector corresponding to

eigenvalue 2

By taking advantage of properties from Φ̃V , computing time can be decreased by roughly 30%

Singular value decomposition of Solution time in sec.
initial system 142.089

new system 103.747

Table 1: Time to compute singular value decomposition in Julia for |Ṽ| = 5899

Figure 5: Non-Vertex Eigenfunctions of Γ4,5 for k even and odd [W]
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