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Objective
• Solve elliptic partial differential equations (PDE) on network like structures
• explain network structure with metric graphs

Multigrid method used to solve the system of equations arising from the PDE

Metric graphs
Combinatorial graph:
• G = (V , E) consisting of set of vertices V = {v1, v2, . . . , vn} and set of edges E = {e1, e2, . . . , em}
• Ev denotes set of edges adjacent to vertex v ∈ V

Coordinates on edges:
• Assign length ℓe < ∞ and interval [0, ℓe] to each edge e ∈ E of G
• Each point on edge e corresponds to a coordinate x ∈ [0, ℓe]

⇝ metric graph Γ = (V , E , ℓE), where ℓE = {ℓe}e∈E
Function spaces on metric graphs:
• Lebesgue space L2(Γ) :=

⊕
e∈E L2(e), with L2(e) Lebesgue space on interval [0, ℓe]

• Sobolev space H1(Γ) :=
⊕

e∈E H
1(e) ∩ C0(Γ)

Additional condition C0(Γ) necessary to guarantee continuity on vertices

Formulation of the problem
For given f ∈ L2(Γ), find solution u of:

− d2u

dx2
(x) + νu(x) = f for x ∈ Γ and constant potential ν ≥ 0

with Neumann-Kirchhoff conditions:
∑
e∈Ev

du

dx
(v) = 0 for all vertices v ∈ V

and u continuous on all vertices: u ∈ C0(Γ).

Weak formulation:
Find u ∈ H1(Γ), such that

h(u, g) =
∑
e∈E

{∫
e

du

dx

dg

dx
dx +

∫
e
νug dx

}
=
∑
e∈E

∫
e
fg dx =: F (g) for all g ∈ H1(Γ) (1)

bilinear form h fulfills requirements of the Lax-Milgram theorem
⇝ existence of a unique solution of (1)

Discretization
Discretization of edges:
• Standard finite element discretization on each edge
• Divide interval [0, ℓe] on edge e ∈ E into ne subintervals of length he = 1

ne

⇝ internal vertices Ve = {xej}
ne−1
j=1 (discretization points)

Extended graph:
Sequence vout < xe1 < xe2 < . . . < xene−1 < vin forms connected sequence of vertices and edges, on edge
e = {vout, vin} ∈ E
⇝ discretized metric graph is again a metric graph G called extended graph

Neighbourhood of vertex v:
Neighbouring set Wv of vertex v ∈ V contains all adjacent
subintervals to vertex v:

Wv :=


⋃

e∈{e∈Ev:vein=v}
[v, xe1]

 ∪

 ⋃
e∈{e∈Ev:veout=v}

[xene−1, v]


v

Wv xe21

xe22

xe31 xe32

xe1ne−1

xe1ne−2

xe41xe42 xe5ne−1

xe5ne−2

Hat function basis:
Basis of hat functions centred around internal vertices:

ψej(x) =

1− |xej−x|
he

, if xej−1 ≤ x ≤ xej+1
0 , else

⇝
{
ψej

}ne−1

j=1
form basis of the space

V ehe =
{
w ∈ H1

0(e) : w|[xej, xej+1]
linear function , j = 0, . . . , ne − 1

}
Basis functions centred around vertices given by vertex hat
functions:

ϕv(x)
∣∣
Wv∩e =

{
1− |xev−x|

he
, if x ∈ Wv ∩ e and e ∈ Ev

0 , else

Wv

ϕv
1

v

Approximation space: Vh(Γ) ⊂ C0(Γ), Vh(Γ) :=

(⊕
e∈E

V ehe

)
⊕ span{ϕv}v∈V

Discretization of the weak form
Solution of the weak form in Vh(Γ):
• uh ∈ Vh(Γ) solution of the weak form (1) in the approximation space
• Written as linear combination of basis functions:

uh(x) =
∑
e∈E

ne−1∑
j=1

uejψ
e
j(x) +

∑
v∈V

uvϕv(x) (2)

System of equations:
Testing with basis functions in the bilinear form⇝ system of equations:

H

[
uE
uV

]
=

[
HEE HEV
HT

EV HVV

] [
uE
uV

]
=

[
fE
fV

]
,

where

uE =

 u1
...

um

 , with ue =

 ue1...
uene−1

 , and uV =

 u1...
un

 ,
vectors with coefficients from the linear combination (2).

Vectors fE and fV given by

fE =

 f1
...
fm

 , with fe =

 fe1...
fene−1

 and fV =

 f1
...
fn

 , such that fek =

∫
supp(ψek)

fψekdx and fv =
∫
Wv

fϕvdx

Properties of h imply: H is symmetric positive definite

• HEE ∈ Rñ×ñ, ñ :=
∑
e∈E ne − 1

describes overlap of supports of (only) ψej ⇝ block-tridiagonal-matrix (one block per edge)

• HEV ∈ Rñ×ñ; overlap of supports of both ψej and ϕv

• HVV ∈ Rn×n; overlap of supports of ϕv⇝ diagonal matrix

Multigrid method on graphs
• Use hierarchical discretization on edges⇝ divide edges into 2J subintervals, J = 1, . . . , Jmax

• Use intergrid operators to transport solution between level J and J + 1 of dicretization

Restriction operators on edge:
• Standard hat functions at internal nodes⇝ refinement relation:

ψ
e,J−1
i (x) =

1

2
ψ
e,J
i−1(2x) + ψ

e,J
i (2x) +

1

2
ψ
e,J
i+1(2x) (3)

• Vertex hat functions at vertices⇝ adjusted refinement relation:

ϕJ−1
vin

(x) = ϕJvin
(2x) +

1

2
ψ
e,J
1 (2x) (4) Level J − 1

Level J

1
2 1

1
2

⇝ Restriction operator r and prolongation operator p = rT defined by refinement relations
Restriction operators on the graph:

r =

(
rEE 0
rVE rVV

) • rEE : edgewise application of refinement relation (3) to functions ψej
• rVE and rVV : edgewise application of refinement relation (4)
⇝ for e ∈ Ev edgewise application of (4) on vertex hat functions

Multigrid method k-th cycle (MG(J,u
(k)
J , ν1, ν2, µ)):

J level of refinement, u(k)J approximation of solution uJ ,
ν1/2 number of a priori/posteriori smoothing steps, µ parameter for recursive call of MG

1. A priori smoothing: u(k,1)J := (S(u(k)J ))ν1

2. Coarse grid correction:
residual dJ = fJ − HJ u

(k,1)
J and restriction fJ−1 = r dJ

restriction HJ−1 = rHJ r
T

solve HJ−1vJ−1 = fJ−1

If J = Jmin solve problem exactly

If J > Jmin find approximation by performing µ steps of MG(J − 1,u
(0)
J−1 = 0, ν1, ν2, µ)

3. Prolongation: Set u(k,2)J := u
(k,1)
J + rTvJ−1

4. A posteriori smoothing: u(k,3)J = (S(u(k,2)J ))ν2

Set u(k+1)J := u
(k,3)
J

Choice of smoother:
S chosen as Jacobi smoother; balance between computational cost and convergence improvement

Numerical results on convergence
• Test problem on graph obtained using Barabási-Albert model: 2000 vertices, 25909 edges

• Discretization with 256 subintervals on each edge of length ℓe = 1 (∼ Jmax = 8)
⇝ size of HEE : 6606795 × 6606795

• Stopping criteria: error accuracy of 10−8; f edgewise defined by fek(x) = cos(2π x k)

• Convergence rate measured as quotient of norm of consecutive residual on vertices and edges

Numerical convergence rate for V-cycle (µ = 1) and W-cycle (µ = 2): convergence rate on edges
convergence rate on vertices

Level Jmax

1

Figure 1: smoothing parameters ν1 = 2, ν2 = 2

Figure 2: smoothing parameters ν1 = 5, ν2 = 3

Level Jmax

1

Figure 3: smoothing parameters ν1 = 2, ν2 = 2

Figure 4: smoothing parameters ν1 = 5, ν2 = 3

References
[AB] M. Arioli, M. Benzi, A finite element method for quantum graphs, IMA Journal of Numerical Analysis, Volume 38, Issue 3, Pages 1119-1163, 2017.
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