Multigrid method based on Finite Elements on Metric Graphs

Max Brockmann

Work group of Prof. Dr. Angela Kunoth, University of Cologne

Objective

- Solve elliptic partial differential equations (PDE) on network like structures
- explain network structure with metric graphs

Multigrid method used to solve the system of equations arising from the PDE

Metric graphs

Combinatorial graph:

- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ consisting of set of vertices $\mathcal{V} = \{v_1, v_2, \ldots, v_n\}$ and set of edges $\mathcal{E} = \{e_1, e_2, \ldots, e_m\}$
- \mathcal{E}_v denotes set of edges adjacent to vertex $v \in \mathcal{V}$

Coordinates on edges:

- Assign length $\ell_e < \infty$ and interval $[0, \ell_e]$ to each edge $e \in \mathcal{E}$ of \mathcal{G}
- Each point on edge e corresponds to a coordinate $x \in [0, \ell_e]$

 \rightsquigarrow metric graph $\Gamma = (\mathcal{V}, \mathcal{E}, \ell_{\mathcal{E}})$, where $\ell_{\mathcal{E}} = \{\ell_e\}_{e \in \mathcal{E}}$ **Function spaces on metric graphs:**

Universität zu Köln

Vectors $f_{\mathcal{E}}$ and $f_{\mathcal{V}}$ given by

$$\mathbf{f}_{\mathcal{E}} = \begin{bmatrix} \mathbf{f}^{1} \\ \vdots \\ \mathbf{f}^{m} \end{bmatrix}, \text{ with } \mathbf{f}^{e} = \begin{bmatrix} f_{1}^{e} \\ \vdots \\ f_{ne}^{e-1} \end{bmatrix} \text{ and } \mathbf{f}_{\mathcal{V}} = \begin{bmatrix} f_{1} \\ \vdots \\ f_{n} \end{bmatrix}, \text{ such that } f_{k}^{e} = \int f \psi_{k}^{e} dx \text{ and } f_{v} = \int_{\mathscr{W}_{v}} f \phi_{v} dx$$

Properties of h imply: H is symmetric positive definite • $\mathbf{H}_{\mathcal{E}\mathcal{E}} \in \mathbb{R}^{\tilde{n} \times \tilde{n}}, \quad \tilde{n} := \sum_{e \in \mathcal{E}} n_e - 1$ describes overlap of supports of $(only) \psi_i^e \rightsquigarrow block-tridiagonal-matrix (one block per edge)$ • $\mathbf{H}_{\mathcal{EV}} \in \mathbb{R}^{\tilde{n} \times \tilde{n}}$; overlap of supports of both ψ_i^e and ϕ_v • $\mathbf{H}_{\mathcal{V}\mathcal{V}} \in \mathbb{R}^{n \times n}$; overlap of supports of $\phi_v \rightsquigarrow$ diagonal matrix

Multigrid method on graphs

• Lebesgue space $L_2(\Gamma) := \bigoplus_{e \in \mathcal{E}} L_2(e)$, with $L_2(e)$ Lebesgue space on interval $[0, \ell_e]$ • Sobolev space $H^1(\Gamma) := \bigoplus_{e \in \mathcal{E}} H^1(e) \cap C^0(\Gamma)$ Additional condition $C^0(\Gamma)$ necessary to guarantee continuity on vertices

Formulation of the problem

For given $f \in L_2(\Gamma)$, find solution u of:

 $-\frac{d^2u}{dx^2}(x) + \nu u(x) = f$ for $x \in \Gamma$ and constant potential $\nu \ge 0$ with Neumann-Kirchhoff conditions: $\sum_{e \in \mathcal{E}_{n}} \frac{du}{dx}(v) = 0$ for all vertices $v \in \mathcal{V}$ and u continuous on all vertices: $u \in C^0(\Gamma)$.

Weak formulation:

Find $u \in H^1(\Gamma)$, such that

$$\mathfrak{H}(u,g) = \sum_{e \in \mathcal{E}} \left\{ \int_e \frac{du}{dx} \frac{dg}{dx} dx + \int_e \nu ug \, dx \right\} = \sum_{e \in \mathcal{E}} \int_e fg \, dx =: F(g) \quad \text{for all } g \in H^1(\Gamma)$$
(1)

bilinear form h fulfills requirements of the Lax-Milgram theorem

 \rightarrow existence of a unique solution of (1)

Discretization

Discretization of edges:

• Standard finite element discretization on each edge

• Divide interval
$$[0, \ell_e]$$
 on edge $e \in \mathcal{E}$ into n_e subintervals of length $h_e = \frac{1}{n}$

$$\rightsquigarrow$$
 internal vertices $\mathscr{V}_e = \{x_j^e\}_{j=1}^{n_e-1}$ (discretization points)

Extended graph:

• Use hierarchical discretization on edges \rightsquigarrow divide edges into 2^J subintervals, $J = 1, \ldots, J_{\text{max}}$ • Use intergrid operators to transport solution between level J and J + 1 of dicretization

Restriction operators on edge:

• Standard hat functions at internal nodes \rightsquigarrow refinement relation:

$$\psi_i^{e,J-1}(x) = \frac{1}{2}\psi_{i-1}^{e,J}(2x) + \psi_i^{e,J}(2x) + \frac{1}{2}\psi_{i+1}^{e,J}(2x)$$
(3)

• Vertex hat functions at vertices \rightsquigarrow adjusted refinement relation:

$$\phi_{v_{\text{in}}}^{J-1}(x) = \phi_{v_{\text{in}}}^{J}(2x) + \frac{1}{2}\psi_{1}^{e,J}(2x)$$
(4)

 \rightarrow Restriction operator r and prolongation operator $\mathbf{p} = \mathbf{r}^T$ defined by refinement relations **Restriction operators on the graph:**

• $\mathbf{r}_{\mathcal{E}\mathcal{E}}$: edgewise application of refinement relation (3) to functions ψ_i^e $\mathbf{r} = \begin{pmatrix} \mathbf{r}_{\mathcal{E}\mathcal{E}} & \mathbf{0} \\ \mathbf{r}_{\mathcal{V}\mathcal{E}} & \mathbf{r}_{\mathcal{V}\mathcal{V}} \end{pmatrix}$ • $\mathbf{r}_{\mathcal{V}\mathcal{E}}$ and $\mathbf{r}_{\mathcal{V}\mathcal{V}}$: edgewise application of refinement relation (4) \sim for $e \in \mathcal{E}_v$ edgewise application of (4) on vertex hat functions

Multigrid method k-th cycle $(MG(J, \mathbf{u}_J^{(k)}, \nu_1, \nu_2, \mu))$:

J level of refinement, $\mathbf{u}_{J}^{(k)}$ approximation of solution \mathbf{u}_{J} , $\nu_{1/2}$ number of a priori/posteriori smoothing steps, μ parameter for recursive call of MG

1. A priori smoothing: $\mathbf{u}_{I}^{(k,1)} := (\mathcal{S}(\mathbf{u}_{I}^{(k)}))^{\nu_{1}}$ 2. Coarse grid correction: residual $\mathbf{d}_J = \mathbf{f}_J - \mathbf{H}_J \mathbf{u}_J^{(k,1)}$ and restriction $\mathbf{f}_{J-1} = \mathbf{r} \mathbf{d}_J$ restriction $\mathbf{H}_{J-1} = \mathbf{r} \mathbf{H}_J \mathbf{r}^T$ solve $\mathbf{H}_{J-1}\mathbf{v}_{J-1} = \mathbf{f}_{J-1}$ If $J = J_{\min}$ solve problem exactly If $J > J_{\min}$ find approximation by performing μ steps of $MG(J-1, \mathbf{u}_{J-1}^{(0)} = \mathbf{0}, \nu_1, \nu_2, \mu)$ 3. Prolongation: Set $\mathbf{u}_{I}^{(k,2)} := \mathbf{u}_{I}^{(k,1)} + \mathbf{r}^{T}\mathbf{v}_{J-1}$

Sequence $v_{out} < x_1^e < x_2^e < \ldots < x_{n_e-1}^e < v_{in}$ forms connected sequence of vertices and edges, on edge $e = \{v_{\text{out}}, v_{\text{in}}\} \in \mathcal{E}$

 \rightsquigarrow discretized metric graph is again a metric graph \mathscr{G} called extended graph

Neighbourhood of vertex v:

Neighbouring set \mathscr{W}_v of vertex $v \in \mathcal{V}$ contains all adjacent subintervals to vertex v:

$$\mathscr{W}_{v} := \left\{ \bigcup_{e \in \{e \in \mathcal{E}_{v}: v_{\text{in}}^{e} = v\}} [v, x_{1}^{e}] \right\} \cup \left\{ \bigcup_{e \in \{e \in \mathcal{E}_{v}: v_{\text{out}}^{e} = v\}} [x_{n_{e}-1}^{e}, v] \right\}$$

Hat function basis:

Basis of hat functions centred around internal vertices:

$$\begin{split} \psi_{j}^{e}(x) &= \begin{cases} 1 - \frac{|x_{j}^{e} - x|}{h_{e}} &, \text{ if } x_{j-1}^{e} \leq x \leq x_{j+1}^{e} \\ 0 &, \text{ else} \end{cases} & & \\ & & \sim \left\{ \psi_{j}^{e} \right\}_{j=1}^{n_{e}-1} \text{ form basis of the space} \\ & & V_{h_{e}}^{e} &= \left\{ w \in H_{0}^{1}(e) : w|_{[x_{j}^{e}, x_{j+1}^{e}]} \text{ linear function }, j = 0, \dots, n_{e} - 1 \right\} \end{split}$$

Basis functions centred around vertices given by vertex hat functions:

$$\begin{split} \phi_{v}(x)\big|_{\mathscr{W}_{v}\cap e} &= \begin{cases} 1 - \frac{|x_{v}^{e} - x|}{h_{e}} &, \text{ if } x \in \mathscr{W}_{v} \cap e \text{ and } e \in \mathcal{E}_{v} \\ 0 &, \text{ else} \end{cases} \\ \\ \textbf{Approximation space: } V_{h}(\Gamma) \subset C^{0}(\Gamma), \quad V_{h}(\Gamma) := \left(\bigoplus_{e \in \mathcal{E}} V_{h_{e}}^{e}\right) \oplus \text{ span}\{\phi_{v}\}_{v \in \mathcal{V}} \end{split}$$

4. A posteriori smoothing:
$$\mathbf{u}_J^{(k,3)} = (\mathcal{S}(\mathbf{u}_J^{(k,2)}))^{\nu_2}$$

Set $\mathbf{u}_J^{(k+1)} := \mathbf{u}_J^{(k,3)}$

Choice of smoother:

 \mathcal{S} chosen as Jacobi smoother; balance between computational cost and convergence improvement

Numerical results on convergence

• Test problem on graph obtained using Barabási-Albert model: 2000 vertices, 25909 edges

- Discretization with 256 subintervals on each edge of length $\ell_e = 1$ (~ $J_{\text{max}} = 8$) \rightsquigarrow size of $\mathbf{H}_{\mathcal{E}\mathcal{E}}$: 6606795 \times 6606795
- Stopping criteria: error accuracy of 10^{-8} ; f edgewise defined by $f^{e_k}(x) = cos(2\pi x k)$

• Convergence rate measured as quotient of norm of consecutive residual on vertices and edges

convergence rate on edges
convergence rate on vertices

Discretization of the weak form

Solution of the weak form in $V_h(\Gamma)$:

• $u_h \in V_h(\Gamma)$ solution of the weak form (1) in the approximation space • Written as linear combination of basis functions:

$$u_h(x) = \sum_{e \in \mathcal{E}} \sum_{j=1}^{n_e-1} u_j^e \psi_j^e(x) + \sum_{v \in \mathcal{V}} u_v \phi_v(x)$$

System of equations:

Testing with basis functions in the bilinear form \rightsquigarrow system of equations:

$$\mathbf{H}\begin{bmatrix}\mathbf{u}_{\mathcal{E}}\\\mathbf{u}_{\mathcal{V}}\end{bmatrix} = \begin{bmatrix}\mathbf{H}_{\mathcal{E}\mathcal{E}} & \mathbf{H}_{\mathcal{E}\mathcal{V}}\\\mathbf{H}_{\mathcal{E}\mathcal{V}}^T & \mathbf{H}_{\mathcal{V}\mathcal{V}}\end{bmatrix}\begin{bmatrix}\mathbf{u}_{\mathcal{E}}\\\mathbf{u}_{\mathcal{V}}\end{bmatrix} = \begin{bmatrix}\mathbf{f}_{\mathcal{E}}\\\mathbf{f}_{\mathcal{V}}\end{bmatrix},$$

where

$$\mathbf{u}_{\mathcal{E}} = \begin{bmatrix} \mathbf{u}^{1} \\ \vdots \\ \mathbf{u}^{m} \end{bmatrix}, \text{ with } \mathbf{u}^{e} = \begin{bmatrix} u_{1}^{e} \\ \vdots \\ u_{n_{e}-1}^{e} \end{bmatrix}, \text{ and } \mathbf{u}_{\mathcal{V}} = \begin{bmatrix} u_{1} \\ \vdots \\ u_{n} \end{bmatrix},$$

vectors with coefficients from the linear combination (2).

References

(2)

[AB] M. Arioli, M. Benzi, A finite element method for quantum graphs, IMA Journal of Numerical Analysis, Volume 38, Issue 3, Pages 1119-1163, 2017.

[BP] M. Brockmann, L. Plötzke, Finite-Elemente-Methode für Quantum-Graphen - Computational Aspects, Ausarbeitung zum Seminar zur Numerik partieller Differentialgleichungen, Department Mathematik/Informatik, Abteilung Mathematik, Universität zu Köln, Sommersemester 2022.