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Objective
 Solve elliptic partial differential equations (PDE) on network like structures

e explain network structure with metric graphs

Multigrid method used to solve the system of equations arising from the PDE

Metric graphs
Combinatorial graph:
G = (V, ) consisting of set of vertices V = {vy, vo,..., vy} and set of edges £ = {eq, e9,..., em}
« £, denotes set of edges adjacent to vertex v € V
Coordinates on edges:
e Assign length /. < oo and interval |0, /.| to eachedge e € £ of G
» Each point on edge e corresponds to a coordinate x € |0, /]
~»metric graph I' = (V, &, l¢), where l¢ = {lc}oce
Function spaces on metric graphs:
* Lebesgue space Lo(I') := @.c¢ Lo(e), with Lo(e) Lebesgue space on interval |0, /]
» Sobolev space HY(T') := @,.c H'(e) N C(T)

Additional condition C O(F) necessary to guarantee continuity on vertices

Formulation of the problem
For given f € Lo(I"), find solution u of:

d2
— d—;;(x) +vu(x) = f forx € I and constant potential v > 0
. . - du ,
with Neumann-Kirchhoff conditions: Z d—(v) = (0 for all verticesv € V
T

ecé&,
and v continuous on all vertices: u € CO(F).

Weak formulation:
Find v € HYI), such that

h(u, g) = Z {/j—zj—ider/Vugd:c} = Z fgdx =: F(g) forall g €& Hl(F) (1)
ecf € €

ecE V"
bilinear form § fulfills requirements of the Lax-Milgram theorem

~~ existence of a unique solution of (1)
Discretization

Discretization of edges:

e Standard finite element discretization on each edge

e Divide interval |0, {.| on edge e € & into n. subintervals of length h, = ni
~ internal vertices ¥, = {a:j}?‘;}l (discretization points)

Extended graph:

Sequence vout < 7] < 25 < ... < 7

e = {vout, Vint € &
~ discretized metric graph is again a metric graph ¢ called extended graph

€

_ 1 < vy, forms connected sequence of vertices and edges, on edge
ne—1 m

Neighbourhood of vertex v:
Neighbouring set %, of vertex v € ) contains all adjacent
subintervals to vertex v:

Wy = J o [vaf] p U 9 2y, —1, v

ec{ec&, v =v} L ec{ec&, vl =0}

Hat function basis:
Basis of hat functions centred around internal vertices:

€

25— ]

_ . e € .
UHEIES L R & 1
0 ,else P
V" form basis of th
~ - orm basis of the space —..
{% }7:1 pss )
e 1 . . . .
Vy = {w € Hj(e) : w\[$§7x§+l] linear function , j = 0,...,ne — 1}

Basis functions centred around vertices given by vertex hat
functions:

B 1—‘%];37| Jfz e #,Neand e € &,
W,Ne ‘

0 , else

dv(T)

Approximation space: V;,(I') c CV(T), V() = (@ Vf) @ span{dy } ey
ec€

Discretization of the weak form

Solution of the weak form in 1, (I"):
*uj, € V3(I') solution of the weak form (1) in the approximation space

 Written as linear combination of basis functions:

ne.—1
up(z) = Y uSeS(x) + > updu() (2)
ect j=1 veY

System of equations:
Testing with basis functions in the bilinear form ~~ system of equations:

o) = [ w1
uy H?C;V HVV uy) fV 7

where
-~ - - - L
u Uy uy
uc=| : |, withu®= ,anduy = | |,
u” _u%e—l_ U

vectors with coefficients from the linear combination (2).

Multigrid method based on Finite Elements on
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Vectors f¢ and fy, given by

f /i fi
fe=1| ¢ |, withf® = : and fy = | : |, suchthat f; —/fzbzda: and f, = /fgbvdx
&
RS R/ | Jn supp(1) 7

Properties of f) imply: H 1s symmetric positive definite

‘Hgg c RﬁXﬁ, n = 2665 Ne — 1
describes overlap of supports of (only) ¢§ ~~ block-tridiagonal-matrix (one block per edge)

*Heyp € R™X7: gverlap of supports of both w}‘? and ¢,

* Hyy, € R"™"; overlap of supports of ¢, ~» diagonal matrix

Multigrid method on graphs

 Use hierarchical discretization on edges ~~ divide edges into 27/ subintervals, J =1,..., Jmax

 Use intergrid operators to transport solution between level J and J + 1 of dicretization

Restriction operators on edge: % 1 %
 Standard hat functions at internal nodes ~~ refinement relation: " ’
J—1 L oeg J L eJ
Ut @) = S (2n) + 4 (20) + S (20) (3
* Vertex hat functions at vertices ~~ adjusted refinement relation: . S
Tle) = ¢ (22) + =P (22) (4) "~ Level J 1
" " 2 - Level J

~» Restriction operator r and prolongation operator p = r! defined by refinement relations

Restriction operators on the graph:
*rec: edgewise application of refinement relation (3) to functions zb;
(i)
rye ryy

Multigrid method k-th cycle (MG(J,u'}) 1, v, 1)):
(k)

J level of refinement, u’; * approximation of solution u y,
V19 number of a priori/posteriori smoothing steps, 1 parameter for recursive call of MG

*ry¢ and ryy: edgewise application of refinement relation (4)
~ fore € &, edgewise application of (4) on vertex hat functions

1. A priori smoothing: um — (‘S'(ug{)))”1

2. Coarse grid correction:

residual dJ = fJ — HJ U_<k’1>

and restrictionf;_; = rd;

restriction H;_| = rH; rl

solve HJ—1VJ—1 = fJ_1
It J = Jyiq solve problem exactly

If J > Jy, find approximation by performing p steps of MG(J — 1, uf]ozl =0, vy, 9, |4)

3. Prolongation: Set uSk,Q) = u((]/f,U + rTVJ_l
4. A posteriori smoothing: ugk’g) = (‘S’(uF]k’Z)))V2
Set uffkﬂ) = uSkﬁ)

Choice of smoother:
S chosen as Jacobi smoother; balance between computational cost and convergence improvement

Numerical results on convergence
 Test problem on graph obtained using Barabasi-Albert model: 2000 vertices, 25909 edges

e Discretization with 256 subintervals on each edge of length /. = 1 (~ Jmax = 8)
~ size of Heg: 6606795 x 6606795

» Stopping criteria: error accuracy of 10~°; f edgewise defined by £ (z) = cos(2r z k)

e Convergence rate measured as quotient of norm of consecutive residual on vertices and edges

— convergence rate on edges

Numerical convergence rate for V-cycle (u = 1) and W-cycle (= 2): convergence rate on vertices
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Figure 1: smoothing parameters vy = 2, 15 = 2 Figure 3: smoothing parameters v; = 2, 15 = 2
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Figure 2: smoothing parameters v; = 5, 15 = 3 Figure 4: smoothing parameters v; = 5, 15 = 3
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