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Zusammenfassung

Zusammenfassung1

Optimale Kontrollprobleme sind seit Jahren Gegenstand umfangreicher Forschungen und numerischer
Studien. In dieser Arbeit wenden wir Wavelets auf Kontrollprobleme an, welche auf linearen elliptischen
partiellen Differentialgleichungen (PDE) basieren sowie auf Kostenfunktionalen mit nicht-ganzzahligen
Sobolevnormen. Dabei setzen wir den Schwerpunkt auf die effiziente numerische Behandlung der PDE-
Nebenbedingungen und die exakte Behandlung der rationalen Sobolevnormen. Diese Ziele erreichen wir
durch die Verwendung von Waveletmethoden in Verbindung mit Normäquivalenzen. Waveletvorkondi-
tionierungsmethoden sind asymptotisch optimal: die resultierenden diskretisierten linearen Operatoren
besitzen gleichmäßig beschränkte spektrale Kondition. Folglich können die resultierenden linearen Glei-
chungssysteme iterativ mit einem Aufwand an arithmetischen Operationen gelöst werden, der propor-
tional zur Anzahl der Unbekannten ist.
In der jüngeren Vergangenheit haben sich Wavelets bei der Lösung von elliptischen Differentialgleichungen
bewährt. Die Stärken von Wavelets kommen besonders in der Numerischen Analysis durch das theore-
tische Grundgerüst, insbesondere hier durch die Multiresolution Analysis (MRA), zum Tragen. Die
Riesz-Basis-Eigenschaft der Waveletbasen erlaubt es, Anwendungen mit Normen von gebrochen ratio-
nalen Sobolevräumen zu bearbeiten; ein Vorteil gegenüber Finite-Elemente-Methoden (FEM), welche
nur Berechnungen mit ganzzahligen Sobolevindizes zulassen. Ein weiterer Vorteil ist die Verfügbarkeit
von biorthogonalen Waveletbasen, d.h. die Existenz primaler und dualer Waveletbasen, Ψ, Ψ̃ mit der
Eigenschaft 〈Ψ, Ψ̃ 〉 = 1. Diese können unabhängig voneinander gewählt werden um Momentenbe-
dingungen beliebiger Ordnung und Normäquivalenzen für beliebig glatte Sobolevräume zu erfüllen.
Genauer gesagt erzeugen Konstruktionen aktuell verfügbarer primaler Wavelets stückweise polynomiale
Waveletbasen mit kompaktem Träger, welche in expliziter Form angegeben werden können. Die dualen
Waveletbasen werden anhand der aus der Problemstellung benötigten Regularität in den Jackson- und
Bernsteinungleichungen konstruiert und sind in der Regel nur implizit gegeben. Die daraus resultie-
renden Normäquivalenzen ermöglichen die präzise Behandlung von Kontrollproblemen mit gebrochenen
Sobolevnormen der Kontrolle und des Zustands mit dem gleichen Aufwand wie im L2-Fall. Dies ist sogar
noch für den Fall von dualen (gebrochenen) Sobolevnormen durchführbar (vgl. [12]).
Diese Diplomarbeit befaßt sich mit Waveletmethoden zur Lösung von elliptischen Kontrollproblemen
mit Dirichlet-Randkontrolle. Bei dieser Klasse von Problemen erscheint die Kontrolle u als Dirichlet-
Randbedingung in der partiellen Differentialgleichung, welche die Nebenbedingung des zu minimierenden
Funktionals darstellt. Das abstrakte Problem ist folgendermaßen gestellt:
Gegeben seien Daten yΓy

und f . Minimiere das Funktional

J (y, u) =
1
2
‖y − yΓY

‖2Y,ΓY
+
ω

2
‖u‖2Q,Γ, (1)

wobei der Zustand y und die Kontrolle u über das lineare elliptische Randwertproblem

−∇ · (a∇y) + k y = f in Ω,
y = u auf Γ, (2)

(a∇y) · n = 0 auf ∂Ω \ Γ,

zusammenhängen.
Die Randbedingungen im Randwertproblem (2) werden in schwacher Form durch Spuroperatoren um-
gesetzt und mittels Lagrangescher Multiplikatoren an die schwache Formulierung des elliptischen
Differentialoperators angehängt. Das aus (2) resultierende Gleichungssystem besteht nur aus dem schwa-
chen elliptischen Differentialoperator, dem Spuroperator und dem adjungierten Spuroperator,

L

(
y
p

)
:=
(
A B′

B 0

)(
y
p

)
=
(
f
u

)
. (3)

Durch diesem Ansatz ist das Randwertproblem als Sattelpunktproblem formuliert. Solch ein indefinites
System ist numerisch schwieriger zu behandeln als positiv definite Systeme und erfordert deshalb spezielle
Lösungsalgorithmen. Dieses Setup erlaubt auch ein einfaches Aufdatieren der Randbedingungen u, was

1Der folgende Text ist nach der alten deutschen Rechtschreibung verfaßt.
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Zusammenfassung

wiederum für die effiziente Behandlung des Kontrollproblems wichtig sein wird.
Das Sattelpunktproblem wird anschließend durch Lagrangesche Multiplikatoren an das Funktional (1)
angebunden:

Ĵ (y, p, u, z, µ) := J (y, u) +
〈(

z
µ

)
, L

(
y
p

)
−
(
f
u

)〉
. (4)

Die notwendigen und hinreichenden Bedingungen für die eindeutige Lösung des Kontrollproblems sind
nun durch die Optimalitätsbedingungen erster Ordnung des Funktionals (4) gegeben. Da das Funktional
(1) strikt konvex ist, müssen Bedingungen höherer Ordnung nicht in Betracht gezogen werden. Dies führt
zu einem gekoppeltem System von Sattelpunktproblemen in Verbindung mit einer dritten Gleichung, die
Kontrolle und adjungierten Zustand koppelt.

Bei der Modellierung des Kontrollproblems in Waveletkoordinaten sind zwei Details besonders zu
berücksichtigen. Das Funktional (1) soll so exakt wie möglich behandelt werden. Da die Kontrolle u als
Spur einer Funktion in einem ganzzahligen Sobolevraum auftritt, lebt u in einem gebrochen rationalen
Sobolevraum. Die natürlichen Normen im Kostenfunktional sind daher natürlicherweise von gebrochen
rationalen Sobolevnormen gegeben. Diese werden wir durch Normäquivalenzen mit Wavelets modellieren.
Um die Normen möglichst exakt zu repräsentieren, werden wir Riesz Operatoren für diese Räume ein-
setzen. Die Lösung des Sattelpunktsystems (3) muß zur Lösung des Kontrollproblems mindestens einmal
berechnet werden. Dies ist wegen der oben genannten Waveleteigenschaften bezüglich Vorkonditionie-
rungsmethoden effizient möglich (vgl. [20]). Schließlich läßt sich eine unendlich-dimensionale Darstellung
des Kontrollproblems in Waveletkoordinaten erreichen, die nur aus `2-Normen und -Operatoren besteht.

Die Stabilität der endlich-dimensionalen `2-Operatoren, abgeleitet aus ihren unendlich-dimensionalen
Gegenstücken durch Abschneiden der Indexmenge, wird in diesem Rahmen durch die Galerkinstabilität
und die Ladysens̆kaya-Babus̆ka-Brezzi (LBB)-Bedingung garantiert. Diese Operatoren werden sich als
gleichmäßig invertierbare `2-Automorphismen mit gleichmäßig beschränkten Konditionszahlen
ergeben. Wir werden zwei unterschiedliche effiziente Lösungansätze zur Lösung der resultierenden gekop-
pelten linearen Gleichungssysteme aufzeigen.

In [46] wurde ein vollständig iterativer Algorithmus zur effizienten Berechnung des Zustands und der
Kontrolle als Lösung der gekoppelten linearen Gleichungssysteme vorgestellt. Diese Methode entspricht ei-
nem inexakten Gradientenverfahren mit einer äußeren Iterationsvorschrift, welche von einem Schritt-
weitenparameter ρ abhängt, und zwei inneren Iterationsverfahren. In jedem (äußeren) Iterationsschritt
wird jeweils das primale Sattelpunktproblem, mit der Kontrolle als rechter Seite und dem Zustand als
Unbekannte, sowie das adjungierte Problem bis zu einer durch die Diskretisierung vorgegebenen Ge-
nauigkeit gelöst. Zur Lösung des Sattelpunktsystems kommen Uzawa-Algorithmen oder das Verfahren
der konjugierten Gradienten zur Anwendung. Dem Schrittweitenparameter ρ muß dabei besondere Auf-
merksamkeit gewidmet werden, da er die Konvergenz und die Konvergenzgeschwindigkeit des gesamten
Verfahrens bestimmt. Alternativ können die gekoppelten Gleichungssysteme durch Variablenelimination
in eine Gleichung mit einem (un)symmetrischen linearen Operator überführt werden, welche dann mit
wohlbekannten iterativen oder direkten numerischen Verfahren gelöst werden können.

Die Schachtelung der endlich-dimensionalen Waveleträume ermöglicht sofort den Einsatz einer geschach-
telten Iteration. Dabei wird die bis zur Diskretisierungsfehlergenauigkeit berechnete Lösung auf ei-
nem niedrigen Level als Startwert auf dem nächst höheren Level benutzt. Der Fehler der prolongierten
Lösung muß dann nur um einen konstanten Faktor auf jedem Level reduziert werden. Beide oben ge-
nannten Lösungsverfahren besitzen optimale Komplexität bezüglich der Anzahl der Unbekannten.
Dabei wirkt sich die Auswahl der Problemparameter wie z.B. des Schrittweitenparameters oder der ge-
forderten Glattheit der Spuroperatoren auf den Gesamtaufwand und die Konvergenzgeschwindigkeit der
Lösungsalgorithmen aus. Die Untersuchung dieser Effekte ist ein weiterer Teil dieser Arbeit. Ebenfalls
werden wir in dieser Studie die Kontrolle und den Zustand z.B. bei festen rechten Seiten und variieren-
den Ordnungen der Spuroperatoren graphisch darstellen. Dabei wird auch der Wert des Parameters ω
verändert werden, welcher die Gewichtung der einzelnen Anteile im Kostenfunktional (1) steuert. Für
ω > 1 wird die Kontrolle bestraft, also stärker bewertet, und sollte aus diesem Grund niedrigere Werte
in der Norm annehmen.

Die Zielsetzung dieser Arbeit ist die Ausarbeitung und Präsentation der Theorie und der numerischen
Ergebnisse, welche zur Behandlung der oben genannten Problemstellung benötigt werden. Dazu wird die
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Zusammenfassung

Theorie der Thematik linearer elliptischer Kontrollprobleme mit Dirichlet-Randkontrolle dargelegt. Wir
repetieren einige elementare Ergebnisse und Definitionen der Funktionalanalysis und Numerischen Ma-
thematik, welche für das Verständnis der Thematik unerläßlich sind. Anschließend präsentieren wir die
ermittelten numerischen Ergebnisse. Insbesondere zeigen wir die Auswirkungen variierender Sobolevnor-
men auf die Effizienz der numerischen Verfahren und die Qualität der sich ergebenen Lösungen auf. Diese
Ausführungen sollen die in [46] und [47] in der Theorie bewiesenen Behauptungen praktisch bestätigen.

Übersicht

Die Arbeit ist wie folgt gegliedert:

Section 1
In Kapitel 1 wiederholen wir einige Grundlagen aus der Funktionalanalysis, welche für das
Verständnis des Themas unabdingbar sind. Dazu gehören die Definitionen von Sobolevräumen und
Spuroperatoren. Eine kurze Einführung in die Theorie der elliptischen partiellen Differentialglei-
chungen schließt das Kapitel ab.

Section 2
In Kapitel 2 wird die Theorie der Multiskalen-Techniken und die Konstruktion der benutzten eindi-
mensionalen biorthogonalen Waveletbasis beschrieben. Darauf aufbauend wird die Tensorprodukt-
konstruktion für multidimensionale Gebiete dargestellt. Abschließend folgen einige Bemerkungen
über Verbesserungen der Vorkonditionierungstechniken und zur Konstruktion von Riesz-Operatoren
für beliebige Sobolevräume. Dieser Abschnitt ist essentiell für das Verständnis der numerischen Me-
thoden und Ergebnisse.

Section 3
In Kapitel 3 diskutieren wir Sattelpunktprobleme und ihre Anwendung auf elliptische Randwertpro-
bleme. Wir zeigen, wie schwach formulierte elliptische Randwertprobleme als Sattelpunktprobleme
interpretiert werden und wie diese im Waveletrahmen auf natürliche Weise effizient gelöst werden
können. Die Konstruktion der Operatoren und der Aufbau des im Rahmen unseres Kontrollpro-
blems benötigten elliptischen Randwertproblems werden ausgeführt. Schließlich geben wir noch die
Lösungsalgorithmen der Konjugierten Gradienten- und Uzawa-Algorithmen für Sattelpunkt-
probleme an, welche die Lösung mit optimalem Aufwand berechnen.

Section 4
In Kapitel 4 untersuchen wir die Eigenschaften der behandelten Kontrollprobleme im Detail und
leiten die verschiedenen äquivalenten Repräsentationen unseres Kontrollproblems durch die Wa-
velettheorie her. Wir zeigen notwendige und hinreichende Bedingungen in Form von gekoppelten
linearen Gleichungssystemen auf, welche die Lösung unseres Kontrollproblems charakterisieren. Zur
Darstellung des Kontrollproblems als `2-Problem benutzen wir hier die vorher behandelte Wave-
lettheorie. Als letztes präsentieren wir die Lösungsalgorithmen All-In-One und Inexact Gradi-
ent, welche die optimale Kontrolle in asymptotisch optimalem Aufwand ermitteln.

Section 5
In Kapitel 5 präsentieren wir die von uns berechneten numerischen Ergebnisse. Dazu gehören Kon-
ditionszahlen, Iterationsstudien, Konvergenzraten und graphische Darstellungen der Lösungen. Da-
bei soll insbesondere die Effizienz der Waveletmethoden unter Beweis gestellt werden, also die
Optimalität der Vorkonditionierungstechniken und die exakte Behandlung der gebrochen rationa-
len Sobolevnormen in unserem Kontrollproblem. Auf der Modellierungsseite untersuchen wir die
Auswirkungen der Parameter im Kontrollfunktional auf die Qualität der berechneten Lösungen.
Insbesondere sind die Effekte, welche sich durch die veränderbaren Sobolevindizes im Kontrollfunk-
tional ergeben, von großem Interesse. Auf der numerischen Seite untersuchen wir die Effektivität
der numerischen Algorithmen in Form von Iterationsstudien der Lösungsalgorithmen und Konditi-
onszahlen der vorkonditionierten Operatoren.

Section 6
Kapitel 6 enthält die abschließenden Bemerkungen über diese Arbeit und einen Ausblick auf
mögliche Verbesserungen und zukünftige Entwicklungen der Thematik.
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Zusammenfassung

Appendix A
In diesem Kapitel gebe ich einen Überblick über die von mir geschriebene Software. Dabei kam die
Programmiersprache C++ zum Einsatz. Eine Liste der wichtigsten Datenstrukturen und Routinen
wird angegeben. Der interessierte Leser findet hier Kontaktinformationen und einen Link auf die
Software selbst.

Appendix B
In diesem Abschnitt werden alle wichtigen mathematischen Symbole aus dieser Arbeit und einige
wichtige Definitionen, welche nicht im Text stehen, aber benutzt werden aufgelistet.
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Introduction

Introduction

In this thesis, we present wavelet methods for the numerical solution of a control problem constrained by
a linear elliptic partial differential equation (PDE) with Dirichlet boundary control. This problem setup
is challenging, as not only the solution of an elliptic partial differential equation is sought in the most
efficient way possible: we face in addition an optimization problem specified by a target functional.
Recently, biorthogonal wavelets have been utilized for problems in numerical analysis, especially for
solving partial differential equations. Their solid theoretical background and analytic properties, specifi-
cally with respect to Sobolev spaces Hs(Ω), make them our central ingredient for the numerical treatment
of elliptic PDE-constrained control problems.

Optimal Control Problems

Optimization is concerned with problems of the following nature: Find the element u of an admissible
set that minimizes a cost functional. The admissible set can be given by an equality or inequality
condition, often applied to an operator equation, e.g., a partial differential equation. We set our focus on
control problems with linear elliptic PDEs and Dirichlet boundary control, which is the practically
most important case. This means that the control u appears as a Dirichlet boundary condition in the
constraints of the functional to be minimized. The control problem is given as follows:
For some given data yΓY

and f , minimize

J (y, u) =
1
2
‖y − yΓY

‖2Y,ΓY
+
ω

2
‖u‖2Q,Γ (1)

where the state y and the control u are coupled through the linear elliptic boundary value problem

−∇ · (a∇y) + a0 y = f in Ω,
y = u on Γ, (2)

(a∇y) · n = 0 on ∂Ω \ Γ.

The elliptic boundary value problem (2) is handled by means of a weak formulation. The boundary
conditions are enforced weakly by a trace operator B and are bound to the elliptic operator A by the
technique of a Lagrangian multiplier. This is a favorable approach for the treatment of the essential
boundary conditions because it allows for optimal preconditioning. Attaching the boundary conditions
in this manner results in a system of equations which is an incarnation of a saddle point problem:

L

(
y
p

)
:=
(
A B′

B 0

)(
y
p

)
=
(
f
u

)
. (3)

The saddle point problem L is then attached again to the functional (1) by means of Lagrangian
multipliers,

Ĵ (y, p, u, z, µ) := J (y, u) +
〈(

z
µ

)
, L

(
y
p

)
−
(
f
u

)〉
. (4)

The necessary optimality conditions for our control problem are thus determined by the first order nec-
essary optimality conditions for the functional (4). For this problem formulation, second order sufficient
conditions need not be taken into account since the functional (1) is strongly convex. The resulting
equations can be interpreted as a coupled system of PDEs.

Efficient Numerical Solution

Several obstacles have to be overcome for the efficient numerical solution of the above mentioned opti-
mality conditions. Let us first specify what we regard as an ”efficient” solution strategy. The input data
in numerical algorithms is always only given up to discretization error accuracy. Even given data,
e.g., boundary values, will be discretized upon entering them into a computer system. In this case, the
discretization error will be equal to machine precision. Generally, we can only expect results of the
same precision and accuracy as the input data. The discretization error hJ is usually linked to the level of
resolution J in the discretized model and this defines the number of unknowns NJ in our equations. We
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seek to compute the solution of our problem in linear time and complexity O(NJ), i.e., the resources
and time required grow linearly in the number of unknowns. Since every element of the solution must be
computed and thus accessed at least once, one cannot expect any better complexity. A solution method
with these properties is said to be of optimal complexity.
A first obstacle arises during the modelling of the above control problem. The solution y of the elliptic
PDE (2) is generally in a Sobolev space of integral order, e.g., y ∈ Hm with m ∈ IN . The trace y|∂Ω

is then in Hm−1/2 which is a Sobolev space of non-integral or fractional order. In functional (1), the
natural trace norms are therefore given by the norms of the spaces Y = Q = Hm−1/2. Sobolev spaces
of fractional orders are not as easy to handle as those of integral order. A very popular approach to
remedy this problem, especially in finite element theory, is to use a coarser norm, e.g., the L2-norm, but
the problem is then no longer well-defined. As this also deviates from the original problem formulation
significantly, we will devise means to handle the natural trace norms. This will be done as accurate as
possible and with optimal efficiency, i.e., the natural case will be as easy to handle in the wavelet setting
as the L2-case.
On the numerical side, we face several challenges. Firstly, the size of the anticipated discretized systems
prohibits the use of direct solvers, except on very low levels. Instead we use iterative solvers, e.g., the CG-
scheme for symmetric positive definite system matrices, and Uzawa-type algorithms for the saddle point
problem (3). The convergence speed of these iterative solvers increases with the spectral condition
number κ2(A) = ‖A‖2‖A−1‖2 of the operator A. In conventional discretizations, the condition number
depends inversely proportional on the discretization error hJ , e.g., κ2(AJ) ∼ h2

J . Therefore, we use
preconditioning techniques to achieve condition numbers independent of the resolution J . Preconditioners
can generally be categorized in additive and multiplicative type. Examples for additive preconditioners
are the BPX preconditioner for finite element methods [26,55] and the diagonal wavelet preconditioners.
Multigrid methods are multiplicative preconditioners.
Preconditioning will be the essential ingredient for obtaining the solution of our optimal control problem
efficiently. For solving the coupled system of PDEs resulting from considering the optimality conditions
of (4), two distinct approaches will be given:

(I) A fully iterative scheme which was proposed in [46] and which is used for the efficient numerical
solution of the resulting coupled linear equations of the state and control on uniformly discretized
meshes. This method can be interpreted as an inexact gradient scheme with an outer iteration
for the control u which depends on a given step size parameter ρ and two inner iterative methods
on systems of type (3). In each step of the outer iteration the primal saddle point problem (which is
a problem of the state y) and the adjoint saddle point problem are solved up to discretization error
accuracy on the current level. Special consideration must be given to the outer iteration parameter
ρ since the convergence speed directly depends on its value.

(II) Alternatively, the systems of equations can be reformed into one large (un)symmetric linear system
of equations and the conjugate gradient solver can be applied to the corresponding normal equations.
This is called the All-In-One approach.

The above mentioned claims of optimal preconditioned operators and their application in linear time
might appear contradictorily. In order to fulfill all these and address the control problem as accurate as
possible, we will utilize wavelet techniques.

Wavelet Discretization

Wavelet techniques offer a number of theoretical and numerical advantages over Finite-Element-Methods
(FEM). In wavelet discretization, we can address all of the above mentioned modelling and numerical
issues in one framework. Firstly, we can derive a natural representation of the functional (1) with proper
treatment of the natural trace norms. Additionally, an optimally preconditioned discretization of the
elliptic PDE (2), which is applicable in linear time, will be accessible.
We will make use of wavelets in the conceptual framework of multiresolution analysis (MRA). Here,
wavelets form a Riesz basis for relevant function spaces such as Sobolev spaces of any (positive and
negative) order up to a given bound. Additionally, biorthogonality, i.e., having primal and dual
wavelet bases, Ψ, Ψ̃, resp., with the property 〈Ψ, Ψ̃ 〉 = 1, entails moment conditions and norm
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equivalences independently for the primal and dual spaces. More precisely, current primal wavelets are
by construction piecewise polynomials with compact support which are needed to be given explicitly
for the assembly of operators. Dual wavelet bases are chosen to satisfy Jackson- and Bernstein-
inequalities up to a specific order for analytical reasons and are known only implicitly.

The wavelet discretization transforms operators between function spaces, e.g., A : Hm → (Hm)′, into op-
erators on the infinite-dimensional sequence space `2, e.g., A : `2 → `2. Using the above mentioned norm
equivalences, the resulting linear continuous operators will be uniformly invertible `2-automorphisms
with uniformly bounded condition numbers. Finite dimensional `2-operators are derived from their
discretized infinite-dimensional counterparts by restricting the wavelet ansatz space to a finite linear sub-
set. Here stability, i.e., maintaining an `2-automorphism at the transition to finite spaces, is ensured
by Galerkin stability for the elliptic operator A. The discretized saddle point operator L additionally
requires the Ladysens̆kaya-Babus̆ka-Brezzi (LBB)-condition for stability.

Numerical schemes, e.g., Wavelet Methods and FEMs, are always measured by their efficiency and ease of
applicability. In our setting, efficiency will be determined by the Riesz basis constants and the condition
numbers of the resulting matrices AJ and LJ . We will devise basis transformations specifically to reduce
the absolute values of these uniformly bounded condition numbers and, thus, also reduce the numerical
costs for each calculation of the solution of (3). With these tools at our disposal, the solution to our
control problem is accessible with linear complexity.

It should be mentioned that, additionally, wavelets offer a large potential for adaptive refinements. Dis-
cretizations on uniform grids quickly reach computational limitations. Also, the solution of a PDE often
exhibits isolated singularities caused by the data or the geometry. Adaptive refinement strategies pro-
vide a promising potential of achieving a desired accuracy with a minimum of computational complexity
required.

Scope of this Thesis

The goal of this document is the elaboration and presentation of the theoretical fundamentals and the
numerical results of the above mentioned control problem constrained by a linear elliptic PDE with
Dirichlet boundary control. On this account we give an introduction into the matter of such problems to
a readership which should be familiar with functional analysis and numerics.

We will then concern ourselves with the construction of wavelets adapted to the interval and optimized
with respect to preconditioning. We also employ new techniques to evaluate Sobolev norms of integral
and fractional order with linear complexity. Thus, control problems involving fractional Sobolev norms
of the control and the state can be given an appropriate representer which is as easy to set up as in the
L2 case.

The control problem will be reformulated in an `2-setting in terms of a wavelet discretization and the
Euler equations of the functional corresponding to (4) will be considered. This discretization yields a
representation of the control problem which involves only `2-norms and -operators. The solutions of the
finite dimensional stable analogons of these equations will be computed by the above mentioned All-In-
One solver or the Inexact Gradient scheme. Since the finite dimensional wavelet spaces are nested,
these schemes can and will then be employed in a nested iteration strategy, i.e., obtaining the solution
on a fine level by starting on the coarsest level the discretization permits and prolonging the computed
solution to the next finer level once the discretization error accuracy for the solution on this level has
been obtained.

Although both techniques are theoretically of optimal complexity in the number of unknowns, parameter
choices, as for example the smoothness of the trace space, can have a tremendous impact on the conver-
gence speed. This effect can be described as “the curse of the constants” because the overall cost of the
process is still linear although the constants can be very high and the asymptotics may not be verifiable
on small levels.
These effects will be investigated in the course of this work. Also part of these studies are iteration histories
and plots of controls and states with fixed right hand side and fixed parameters except for the order of
the involved trace space. We will also investigate how the parameter ω which weights the importance
of the norms in the functional (1) affects the numerical efficiency and the solution itself. Penalizing the
control by choosing ω > 1 definitely leads to a different solution than loosening the coupling of the state
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y = y(u) and the control u when ω tends to zero. In the limit case ω = 0, the problem statement becomes
ill-defined.
These results are to verify the statements of the theoretical estimates put forward in [46] and [47].

Outline

This thesis is structured as follows.

Section 1
In Section 1 basic vocabulary and definitions from functional analysis necessary for a complete
understanding of the subject matter are recollected.

Section 2
This section gives an introduction to wavelets and the theory of multiresolution analysis, our main
tool in this work. The established wavelet theory is extended by remarks on improving its qualities
in applications by enhanced preconditioning and Riesz operators for norm equivalences with precise
constants. This part lays the groundwork for a complete theoretical understanding of the numerical
schemes.

Section 3
The topic of saddle point problems is discussed in Section 3. First, saddle point problems in general
abstract form will be introduced. Secondly, we show how elliptic boundary value problems in weak
form can be interpreted as saddle point problems. We also demonstrate the actual construction
of the operators on the domain used for our control problem. Lastly, we present the conjugate
gradient and Uzawa algorithms which calculate the solution to these saddle point problems in
optimal complexity if the involved operators are preconditioned optimally.

Section 4
This section gives an introduction to control problems and presents different equivalent represen-
tations of the control problem at hand. We derive the necessary conditions (which are here also
sufficient) describing the optimal control as an unknown in a system of linear equations. The
derivation of the `2-representer of our control problem is shown in terms of of wavelet representa-
tion given before. We present the All-In-One and Inexact Gradient algorithm which both have
asymptotically optimal complexity for determining the control and the state.

Section 5
Here we present and discuss numerical results, e.g., iteration histories, convergence rates and solu-
tions obtained. Special emphasis is laid on the efficiency of the wavelet preconditioning schemes in
the iterative solvers and on accurate implementations of the fractional Sobolev space norms in our
control problem. We will also discuss the intricacies of the modelling of our control problem and
the numerical impact of modelling parameter choices. In particular, we investigate the effects of
varying smoothness in the Sobolev scale onto the effectiveness of the numerical algorithms and the
quality of the produced solution.

Section 6
Finally, this thesis closes with summarizing some insights and final remarks, together with an
outlook on possible future continuations and enhancements of this work.

Appendix A
For the implementation of all routines and functions the object oriented programming language
C++ was used. A short overview of the used data structures and classes is given together with
contact information and information regarding access to the software.

Appendix B
Here we list the most important symbols used in this thesis and state some basic definitions.
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1 Fundamentals

We need to recall some fundamental definitions and propositions from functional analysis which are
needed in the discussion of elliptic control problems in the later chapters. This concerns especially the
Sobolev spaces of fractional order and the trace operators in Section 1.2. The contents of the following
sections are generally based on the books [3] and [41]. Other references are stated in place whenever a
result is quoted.

1.1 Basic Definitions and Vocabulary

Let X,Y be normed linear spaces over the field IR.

Definition 1.1 [Linear Operators and Operator Norms]
We denote all linear operators from X to Y by

L(X;Y ) := {T : X → Y ; T is continuous and linear} . (1.1.1)

For any T ∈ L(X;Y ), the associated operator norm is defined by

‖T‖L(X;Y ) := sup
x∈X, ‖x‖X=1

‖Tx‖Y , (1.1.2)

which is known to be finite for this class of operators (see [3]).

We write L(X) := L(X;X) when X and Y coincide.

Definition 1.2 [Banach Spaces and Equivalent Norms]
A Banach space is a complete vector space B with a norm ‖ · ‖B . A Banach space can have several
norms, e.g. ‖ · ‖B1 and ‖ · ‖B2 , which are called equivalent if they induce the same topology. This is
equivalent to the existence of positive finite constants c and C such that for all v ∈ B

‖v‖B1 ≤ c‖v‖B2 and ‖v‖B2 ≤ C‖v‖B1 , (1.1.3)

written shortly as

‖v‖B1 . ‖v‖B2 and ‖v‖B2 & ‖v‖B1 or ‖v‖B1 ∼ ‖v‖B2 . (1.1.4)

Definition 1.3 [Separable Hilbert Space]
A Hilbert space H is a complete vector space with an inner product (·, ·)H such that the norm is induced
by the inner product as ‖ · ‖H :=

√
(·, ·)H. A Hilbert space is called separable if it contains a countable

dense subset, i.e.,
V = {vi : i = 1, 2, . . .} ⊂ H, such that clos

H
V = H . (1.1.5)

A Hilbert space is always a Banach space, but the converse does not need to hold. Most spaces relevant
for numerical studies are separable since (1.1.5) can equivalently be expressed as

dist(f ;V ) = 0, for all f ∈ H, (1.1.6)

which, in other words, means that every element of H can be approximated analytically or numerically
with arbitrary precision with elements from the space V . Examples of separable Hilbert spaces are the
Lebesgue function spaces Lp(Ω), 1 ≤ p < ∞, and the subspaces Hs(Ω) of L2(Ω). Note that L∞(Ω) is
not separable. Any generic Hilbert space considered in this thesis will be separable.

Definition 1.4 [Dual Space]
Let X be a Banach space. The dual space X ′ of X is the space of all linear continuous functions from
X onto the underlying field IR. In other words,

X ′ := L(X; IR) . (1.1.7)

The elements v′ ∈ X ′ are called linear functionals. The dual form is defined as 〈x, x′〉X×X′ := x′(x).
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Section 1. Fundamentals

1.2 Sobolev Spaces

Most of this section is taken from the books of [50], [1] and [41]. Some details, especially the Fourier
analysis notation, are borrowed from the lecture of [57].
In the following, let Ω ⊂ IRn be a bounded domain with piecewise smooth boundary ∂Ω and Ω being
locally on one side. The meaning and degree of smoothness of ∂Ω will be specified in Section 1.2.2, for
now ∂Ω just shall be considered ”sufficiently smooth”.
The space L2(Ω) is the space of all real-valued square Lebesgue integrable functions on Ω. It is
equipped with the inner product

(u, v)L2(Ω) :=
∫

Ω

u(x)v(x) dµ, (1.2.1)

where µ = µ(x) is the Lebesgue measure. Functions u, v ∈ L2(Ω) are considered equal if u(x) = v(x)
holds almost everywhere, i.e., for all x ∈ Ω \A and µ(A) = 0. L2(Ω) is a Hilbert space.

Remark 1.5 In the following, α := (α1, . . . , αn) ∈ INn
0 is a multi-index. Its definition, along with that

of the classical smoothness spaces Ck, C∞0 (Ω), Hölder spaces Ck,α and Lipschitz spaces Ck,1 can be
found in Appendix B.

Definition 1.6 [Weak Derivative]
We say u ∈ L2(Ω) has the weak derivative v = ∂αu, if v ∈ L2(Ω) and

(φ, ∂αv)L2
= (−1)|α|(∂αφ, u)L2

, for all φ ∈ C∞0 (Ω) . (1.2.2)

Remark 1.7 For convenience purposes, we will omit the domain from the scalar product like we did in
(1.2.2), if this does not create confusion.

If such a v exists, it is unique (in the L2-sense). In case u ∈ Cm(Ω), the weak derivative corresponds to
the classical strong derivative and (1.2.2) follows as an application of Green’s formula.
We now introduce Sobolev spaces as subspaces of L2, in which elements possess weak derivatives of
specific orders.

Definition 1.8 [Sobolev Space on Ω]
For m ∈ IN we denote by Hm(Ω) the Hilbert space of all functions u ∈ L2(Ω) for which the weak
derivatives ∂αu for all |α| ≤ m exist. The inner product of this space is given as

(u, v)Hm :=
∑
|α|≤m

(∂αu, ∂αv)L2
(1.2.3)

which is associated to the norm

‖u‖Hm :=
√

(u, u)Hm =
√ ∑
|α|≤m

‖∂αu‖2L2
. (1.2.4)

A seminorm is given by

|u|Hm :=
√ ∑
|α|=m

‖∂αu‖2L2
. (1.2.5)

The Sobolev spaces are obviously nested, i.e., Hm+1 ⊂ Hm, with the usual definition H0 := L2. A well
known fact is the following

Corollary 1.9 C∞(Ω) ∩Hm(Ω) is dense in Hm(Ω) for m ∈ IN0.

The series of spaces Hm,m ∈ IN0, can be extended to a scale of spaces with continuous smoothness
indices, which will be of great importance later. These subspaces of Hm are Sobolev spaces of non-
integral order s /∈ IN and cannot be characterized by weak derivatives alone as above. Instead, we use
the following definition:
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1.2. Sobolev Spaces

Definition 1.10 [Fractional Sobolev Spaces on Ω]
For s = m+ σ,m ∈ IN0, 0 < σ < 1, we introduce an inner product as

(u, v)Hs := (u, v)Hm +
∑
|α|≤m

(∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)||∂αv(x)− ∂αv(y)|
|x− y|n+2σ dµ(x) dµ(y)

)
. (1.2.6)

The space Hs(Ω) is the closure of all functions in Hm(Ω) for which the norm

‖u‖Hs :=
√

(u, u)Hs (1.2.7)

is finite. It is thus a Hilbert space.

Remark 1.11 The Definitions 1.8 and 1.10 also hold in case Ω = IRn.

The Sobolev spaces are nested in the following fashion

Hs1 ⊂ Hs2 ⊂ L2, s1 > s2 > 0, (1.2.8)

for any domain Ω ⊆ IRn.

An Alternative Characterization

An alternative approach to define fractional Sobolev spaces is given by means of Fourier Analysis.
We can define for f ∈ L2(IRn) the Fourier transform F(f) ∈ L2(IRn) as the limit in the L2 sense of∫

|ξ|≤M
exp(±2πix · ξ)f(ξ)dξ, M →∞ . (1.2.9)

The Fourier transform is an isomorphism between L2(IRn) and itself, with

‖F(f)‖L2 = ‖f‖L2 ,

and the identity
F(∂αf) = (2πi)|α|ξαF(f), for all f ∈ L2(IRn)

holds. From the above-mentioned remarks we obtain an equivalent characterization of Hm as:

Hm(IRn) = {v | ξαF(v) ∈ L2(IRn) for all |α| ≤ m} . (1.2.10)

Obviously, it does not matter in (1.2.10) whether m is an integer or whether it is positive. It may be
easily verified that the characterizations ξαF(v) ∈ L2(IRn) and (1 + |ξ|2)s/2F(v) ∈ L2(IRn) for |α| ≤ s
are equivalent. The latter is predominantly used in the following alternative version of Definition 1.10
for Ω = IRn.

Definition 1.12 [Fractional Sobolev Space on IRn]
For s ∈ IR we define the Sobolev space of order s, Hs(IRn), as

Hs(IRn) := {v | (1 + |ξ|2)s/2F(v) ∈ L2(IRn)}, (1.2.11)

which is a Hilbert space when endowed with the inner product:

(u, v)Hs :=
(
(1 + |ξ|2)s/2F(u), (1 + |ξ|2)s/2F(v)

)
L2

. (1.2.12)

Remark 1.13 In case s ∈ IN , the inner products (1.2.3) and (1.2.12) induce equivalent norms, which,
however, are not identical.

For u ∈ Hs(IRn), we can define the restriction operator onto Ω ⊆ IRn,

u→ u|Ω =: restriction of u to Ω, (1.2.13)

which is continuous and linear. In case u ∈ Ck holds, the restriction can be defined pointwise.
The space Hs(Ω) from Definition 1.8 can now be equivalently expressed using the above Definition 1.12
and the following theorem from [50].

Theorem 1.14 Hs(Ω) coincides with the space of restrictions to Ω of the elements of Hs(IRn).

Therefore, for any function u ∈ Hs(Ω), an element ũ ∈ Hs(IRn) can be specified which defines u by means
of local coordinates on the domain Ω. The approach via Fourier transform is in particular applicable for
Sobolev spaces to be defined on periodic domains.
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Section 1. Fundamentals

1.2.1 Subspaces Hs
0 ⊂ Hs

The spaces Hs
0(Ω) are normally loosely referred to as elements of the spaces Hs(Ω) with compact support

in Ω. The definition of the spaces Hs
0(Ω) is an extension of Corollary 1.9.

Definition 1.15 [Sobolev Spaces Hs
0(Ω)]

Hs
0(Ω) is defined as the closure of D(Ω) := C∞0 (Ω) with respect to the norm of Hs(Ω), i.e.,

Hs
0(Ω) := {φ | ∃ {φn} ∈ D(Ω) and φn → φ is a Cauchy sequence in ‖ · ‖Hs(Ω)} . (1.2.14)

Hence the spaces Hs
0(IRn) and Hs(IRn) are equal. In general, the spaces Hs

0(Ω) are closed subspaces of
Hs(Ω). Specifically, we have

Hs
0(Ω) = Hs(Ω), 0 ≤ s ≤ 1

2
, (1.2.15)

which holds because D(Ω) is also dense in Hs(Ω) for s ≤ 1
2 , cf. Corollary 1.9. In the other cases we have

Hs
0(Ω) ( Hs(Ω), s >

1
2
, (1.2.16)

which means that Hs
0(Ω) is strictly contained in Hs(Ω). It is shown in [41] and [39] that one can also

characterize the spaces of (1.2.14) as the following family of functions:

Hs
0(Ω) = {u |u ∈ Hs(Ω), ∂αu = 0 on ∂Ω, |α| ≤ s− 1

2
} . (1.2.17)

These spaces also have an important property regarding their dual spaces which will be seen in Sec-
tion 1.2.3. We now have the following relations between the Sobolev spaces of integral orders:

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .
q ∪ ∪

H0
0 (Ω) ⊃ H1

0 (Ω) ⊃ H2
0 (Ω) ⊃ . . .

(1.2.18)

All inclusions in the above diagram are dense and the embeddings continuous.

1.2.2 Trace Spaces Hs(Γ)

Trace spaces and trace operators appear naturally in the treatment of the boundary value problem con-
sidered in Section 3. To this end, we need to recall a definition of trace spaces and the extension of
classical trace operators onto the space Hs(Ω).
The constraint or trace u|∂Ω of a function u ∈ Hs(Ω) cannot simply be defined pointwise because there
is no guarantee that functions in L2 and Hs can be evaluated at specific points x ∈ Ω. It also makes no
sense to define the trace as the continuous limit when approaching the boundary, because firstly, elements
of H1(Ω) are generally not continuous, and secondly, ∂Ω is a manifold in IRn−1 and, thus, its measure in
IRn is zero. This means we could have u = v a.e. for u, v ∈ L2(Ω) but u(x) 6= v(x) for all x ∈ ∂Ω.
The trace of functions in Sobolev spaces is defined through a trace operator and is given in local coordi-
nates on an open cover of the boundary ∂Ω. This definition depends also on regularity conditions of the
boundary ∂Ω, which we will now formalize.
Let Ω ⊂ IRn be a domain with Lipschitz boundary ∂Ω ∈ Ck,1 to which Ω lies locally on one side. Also,
a fixed section Γ ⊆ ∂Ω should have a positive surface measure. The following local coordinate system is
thus well defined :
For any x ∈ ∂Ω, we can specify a neighborhood V ⊂ IRn with new orthogonal coordinates z = (z′, zn)
where z′ = (z1, . . . , zn−1). Without imposing restrictions, V can be characterized as a cube in these
coordinates, i.e.,

V = {(z1, . . . , zn) | |zj | ≤ 1, 1 ≤ j ≤ n},

and the first n− 1 coordinates z′ of z span the space

V ′ := {(z1, . . . , zn−1) | |zi| ≤ 1, 1 ≤ j ≤ n− 1} .
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1.2. Sobolev Spaces

Let Θ = {Θj | j = 1, . . . , r} be a family of open bounded sets in IRn, covering ∂Ω, such that, for each j,
there exists ϕj ∈ Ck,1(V ′,Θj) with positive Jacobian J(ϕj), 1 ≤ j ≤ r and ϕj is a bijection. Furthermore,
we can arrange to have

ϕj ∈ Ck,1(V+,Θj ∩ Ω), V+ := {(z′, zn) ∈ V | zn < ϕj(z′)},
ϕj ∈ Ck,1(V0,Θj ∩ ∂Ω), V0 := {(z′, zn) ∈ V | zn = ϕj(z′)},

because of the preliminary requirements to Ω above. In other words, Ω lies locally below the graph of
each ϕj and the graph of ϕj is the boundary of Ω in the patch Θj . For each j, the pair (ϕj ,Θj) is called
a coordinate patch for the boundary part ∂Ω ∩Θj .

Definition 1.16 [Sobolev Spaces Hs(∂Ω)]
A distribution u on ∂Ω is in Hs(∂Ω) for any real |s| ≤ k + 1, if and only if

u ◦ Φj ∈ Hs(V ′ ∩ Φ−1
j (Θj ∩ ∂Ω)) . (1.2.19)

This is a Banach space when equipped with the norm

‖u‖2Hs(∂Ω) :=
r∑
j=1

‖yj ◦ Φj‖2Hs(V ′∩Φ−1
j (Θj∩∂Ω))

. (1.2.20)

Remark 1.17 It was proved in [39] that the above definition is independent of the choice of the system
of local maps {ϕj ,Θj}.

The trace space Hs(Γ) ⊂ Hs(∂Ω) can be defined analogously by only considering an open cover Θ of Γ,
which does not intersect with ∂Ω \Γ (except for parts with zero surface measure), then applying the rest
of the definition unchanged.

Remark 1.18 One can exchange ∂Ω ∈ Ck,1 in the above paragraph by ∂Ω ∈ C0 or Ck, the details
remain valid if the maps {ϕj} are adapted appropriately.

Trace Operators

Trace operators which restrict functions u ∈ Hs(Ω) to the boundary can now be constructed as
extensions of the classical trace operators of continuous functions,

u(x1, . . . , xn)|xn=0 := u(x1, . . . , xn−1, 0) . (1.2.21)

We summarize here the results of this topic; for details see the books of [41], [50] and [39].
We define for any function u ∈ Ck,1(Ω̄) its traces of normal derivatives by

γj(u) :=
∂ju

∂νj

∣∣∣∣
Γ

, 0 ≤ j ≤ k, (1.2.22)

where ν = ν(x) is the outward normal on the boundary of Ω which exists a.e. . We will be referring to
γ0 when talking about the trace operator.

Theorem 1.19 Assume that s− 1/2 = m+ σ, 0 < σ < 1,m ∈ IN0 and s ≤ k + 1. Then the mapping

u 7→ {γ0u, γ1u, . . . , γmu}, (1.2.23)

which is defined for u ∈ Ck,1(Ω̄), has a unique continuous extension as an operator from

Hs(Ω) onto
m∏
j=0

Hs−j−1/2(Γ) . (1.2.24)

We will make no distinction between the classical trace operators and the extensions to Sobolev spaces. In
later chapters, we frequently need a classical Trace Theorem which holds for domains Ω with Lipschitz
continuous boundary ∂Ω ∈ C0,1.
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Theorem 1.20 For any u ∈ Hs(Ω), 1/2 < s < 3/2, one can estimate

‖γ0u‖Hs−1/2(Γ) ≤ cT,Ω‖u‖Hs(Ω) . (1.2.25)

Conversely, for every h ∈ Hs−1/2(Γ), there exists some u ∈ Hs(Ω) such that γ0u = h and

‖u‖Hs(Ω) ≤ CT,Ω‖h‖Hs−1/2(Γ). (1.2.26)

As before, cT,Ω and CT,Ω denote positive finite constants, but, as indicated by their subscript, their value
usually depends on properties of the domain Ω.

The range of s extends accordingly if ∂Ω is more regular.

Extension Operators

We can also give estimates which can be seen as a converse counterpart to the above estimate
(1.2.25). These are Whitney-extension results which state that any function u ∈ Hs(Ω) can be
extended to a function ũ ∈ Hs(IRn) such that ũ|Ω = u and

‖ũ‖Hs(IRn) ≤ CE,Ω‖u‖Hs(Ω), s > 0 . (1.2.27)

This is also true for traces of functions: for any h ∈ Hs−1/2(Γ), there exists an extension h̃ ∈ Hs−1/2(∂Ω)
such that

‖h̃‖Hs−1/2(∂Ω) ≤ CE,∂Ω‖h‖Hs−1/2(Γ), s > 0 . (1.2.28)

Again, CE,Ω and CE,∂Ω denote (domain dependent) positive finite constants.

1.2.3 Dual of Sobolev Spaces

Recall that the dual space of Hs(Ω) will generally be denoted by (Hs(Ω))′. The dual space of L2 is
related to L2 again by the Riesz Representation Theorem, i.e., (L2)

′ = L2, and the dual form is
given as

〈u, v〉L2×(L2)
′ :=

∫
u(x) v(x) dµ, u, v ∈ L2 . (1.2.29)

Remark 1.21 In the following, we will omit the space specifiers in the dual form and write only 〈·, ·〉 if
the exact dual form can be ascertained unambiguously from the arguments.

Thus, we have trivially

(H0(Ω))
′
= (H0

0 (Ω))
′
= (L2(Ω))′ = L2(Ω) for domains Ω ⊆ IRn . (1.2.30)

In case Ω = IRn we can use Definition 1.12 with arbitrary negative indices to define Sobolev spaces of
negative order on all IRn. These spaces H−s(IRn) are now the dual spaces of Hs(IRn) as the following
result from [50] shows:

Theorem 1.22 For all s > 0 one has

(Hs(IRn))′ = H−s(IRn) . (1.2.31)

This is not true when the domain under consideration is bounded. However, we can identify some of
these dual spaces with Sobolev spaces of negative order which we define as follows:

Definition 1.23 [Sobolev Spaces H−s(Ω)]
For Ω ⊂ IRn and s ∈ IR+ we define a norm for u ∈ L2(Ω) by

‖u‖H−s(Ω) := sup
v∈Hs

0 (Ω)

〈u, v〉(L2)
′×L2

‖v‖Hs
0 (Ω)

, s > 0 . (1.2.32)

The closure of L2(Ω) with respect to this norm is termed H−s(Ω) = (Hs
0(Ω))′.

The resulting spaces are obviously bigger than L2(Ω) and also nested, and we get the following line of
inclusions:

. . . ⊃ H−2(Ω) ⊃ H−1(Ω) ⊃ L2(Ω) ⊃ H1
0 (Ω) ⊃ H2

0 (Ω) ⊃ . . . . (1.2.33)
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1.2. Sobolev Spaces

1.2.4 Regularity Properties

The following theorem provides information about the relation of the Sobolev spaces Hm+1(Ω) and
Hm(Ω) for domains Ω with Lipschitz boundary ∂Ω ∈ C0,1:

Theorem 1.24 If Ω ⊂ IRn has a Lipschitz boundary, then the embedding Hm+1(Ω) ↪→ Hm(Ω), m ∈ IN0,
is compact.

An even more general result for the spaces Hs
0(Ω) is given by

Theorem 1.25 The embedding Hs
0(Ω) ↪→ Ht

0(Ω), for all s, t ∈ IR with s > t, is continuous and compact.

Of special interest is obviously the relation of the Sobolev spaces Hs to the classical function spaces Ck.
The Embedding Theorem by Sobolev establishes this connection.

Theorem 1.26 If Ω ⊂ IRn has a Lipschitz boundary, then the embedding Hs(Ω) ↪→ Ck(Ω̄) is continuous
for k ∈ IN0 and s > k + n/2.
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1.3 Elliptic Partial Differential Equations

At this point, we need to introduce some basic vocabulary from stationary partial differential equations.
The weak formulation of an elliptic PDE will be at the heart of our class of control problems considered
in Section 4.
In the following Ω ⊂ IRn will always be a bounded domain with a Lipschitzian boundary ∂Ω.

Definition 1.27 [Partial Differential Equation (PDE)]
Let aα,β ∈ L∞(Ω) be bounded coefficient functions satisfying aα,β = aβ,α for all multi-indices α, β with
|α|, |β| ≤ m. A partial differential equation of order 2m,

Ly = f in Ω, (1.3.1)

is determined by a linear differential operator of order 2m, i.e.,

L :=
∑

|α|,|β|≤m

(−1)|β|∂β(aα,β(x)∂α) . (1.3.2)

We associate to (1.3.2) the polynomial in ξ = (ξ1, . . . , ξn) given by

P (ξ, x) :=
∑

|α|=|β|=m

aα,β(x)ξα+β , ξα =
n∏
i=1

ξαi
i . (1.3.3)

Definition 1.28 [Elliptic Operator]
The operator L is said to be elliptic if (1.3.3) satisfies

P (ξ, x) & ‖ξ‖2m2 , for all ξ ∈ IRn, x ∈ Ω . (1.3.4)

Example 1.29 The Laplacian operator

∆ :=
n∑
i=1

∂2

∂x2
i

(1.3.5)

of order 2 is elliptic. The operator

L = −∆ + a0 I, a0 ∈ IR+, (1.3.6)

also satisfies these properties.

It is easily seen that the equation Ly = f does not need to have a unique solution. To ensure uniqueness,
we have to impose further constraints on the solution space. This is typically done by requiring the
solution to attain special boundary values. However, the existence or uniqueness of such boundary values
cannot be determined unless we specify which kind of smoothness we require of our solution.

Definition 1.30 [Classical Solution of an Elliptic Boundary Value Problem]
A function y ∈ C2m(Ω) ∩ C(Ω̄) which solves the elliptic boundary value problem

Ly = f in Ω,
∂iy

∂νi
= ui on ∂Ω, i = 0, . . . ,m− 1,

(1.3.7)

pointwise for given data f and ui is called a classical solution.

The above boundary conditions are generally classified into two types. Especially for the important case
of m = 1, i.e., L is an operator of order 2, for example the Laplace operator (1.3.5), one defines

Definition 1.31 Constraints of the form

y = u on ∂Ω (1.3.8)

are called Dirichlet boundary conditions.
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1.3. Elliptic Partial Differential Equations

and

Definition 1.32 Neumann boundary conditions are of type

∂y

∂ν
= u on ∂Ω . (1.3.9)

If u = 0, the boundary conditions are called homogeneous, otherwise inhomogeneous.

Example 1.33 The PDE

−∆ y + a0 y = f , in Ω,
y = 0, on ∂Ω,

is called Helmholtz problem. In case a0 = 0 it is called Poisson problem.

The existence of a classical solution cannot be proved for arbitrary right hand sides f ∈ C0(Ω) and
ui ∈ C2i(∂Ω). Therefore, we must extend the solution space of (1.3.7) to spaces which permit solutions
and ensure uniqueness.

1.3.1 Variational Problems

In this section, we recall some facts about bilinear forms and operators in the abstract setting of a general
Hilbert space H and its dual H′. In the next section, we recall how a solution approach of the elliptic
partial differential equation (1.3.1) can be embedded into this setting, thus benefitting from the results
collected here.

Definition 1.34 [Continuous and Elliptic Bilinear Forms]
A symmetric bilinear form a : H×H → IR is called continuous, if and only if

a(y, v) . ‖y‖H‖v‖H for all y, v ∈ H . (1.3.10)

A continuous bilinear form is called H−elliptic (or coercive), if and only if

a(y, y) & ‖y‖2H for all y ∈ H . (1.3.11)

Obviously, such a bilinear form is equivalent to the norm of the Hilbert space, i.e.,√
a(y, y) ∼ ‖y‖H . (1.3.12)

Let the operator A : H → H′ be defined by

〈y,Av〉 := a(y, v) . (1.3.13)

By the Theorem of Lax-Milgram (see [3]) it is known that A is an isomorphism inducing the norm
equivalence

‖Ay‖H′ ∼ ‖y‖H, y ∈ H . (1.3.14)

A variational problem can now be phrased like this: Given f ∈ H′, find y ∈ H such that

a(y, v) = 〈f, v〉, for all v ∈ H, (1.3.15)

or, equivalently, in operator notation
Ay = f . (1.3.16)

The Theorem of Lax-Milgram now ascertains a unique solution y = A−1f to problem (1.3.15) which
depends continuously on the right hand side f .
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1.3.2 Weak Formulation of Second Order Dirichlet Problems

Let us return to the elliptic partial differential equation (1.3.7) with inhomogeneous Dirichlet boundary
conditions. The type of problem we will encounter in Section 3 is given as

Ly = f in Ω,
y = u on Γ ⊂ ∂Ω,

∂iy

∂νi
= 0 on ∂Ω \ Γ, i = 1, . . . ,m− 1 .

(1.3.17)

We now consider the special case H = Hm(Ω) with given data f ∈ (Hm(Ω))′ and u ∈ Hm−1/2(Γ). If a
classical solution y ∈ C2m(Ω) ∩ C(Ω̄) exists, multiplication of (1.3.17) with a test function φ ∈ C∞(Ω)
yields

〈Ly, φ〉 = 〈f, φ〉 for all φ ∈ C∞(Ω) . (1.3.18)

The left hand side is used to define the symmetric bilinear form a(·, ·) of Section 1.3.1 after using Green’s
formula,

a(y, φ) := 〈Ly, φ〉

=
∑

|α|,|β|≤m

(−1)|α|
∫

Ω

φ(x) ∂α(aα,β(x) ∂βy(x)) dµ(x) (1.3.19)

=
∑

|α|,|β|≤m

∫
Ω

aα,β(x) (∂αy)(x) (∂βφ)(x) dµ(x) .

After applying partial integration m−times, the boundary integral terms over ∂Ω\Γ vanish here because
of the homogeneous Neumann boundary conditions in (1.3.17). Since these boundary conditions
are therefore naturally built into the weak formulation, they are called natural boundary conditions.
The Dirichlet boundary conditions must be handled differently and are called essential boundary
conditions. The integral terms over Γ vanish by restricting our test function space to functions with
φ|Γ = 0.
The explicit treatment of the inhomogeneous Dirichlet boundary conditions will be the objective of
Section 3. In short, these will be enforced using the trace operator γ0 of Section 1.2.2 and Lagrangian
multipliers.
The form a(·, ·) defined in (1.3.19) is obviously bilinear and symmetric. We can extend the bilinear form
a(·, ·) onto Hm(Ω)×Hm(Ω) by Corollary 1.9.
The right hand side of (1.3.18) defines a linear functional on the space Hm(Ω) :

〈f, v〉 =
∫

Ω

f(x)v(x) dµ(x) . (1.3.20)

We will for an instant focus the discussion on the invertibility of the bilinear form (1.3.19) alone, for the
special case of homogeneous boundary conditions u = 0. In view of Section 1.3.1, the task is then to find
the element y ∈ Hm(Ω) with y|Γ = 0 such that

a(y, v) = 〈f, v〉 for all v ∈ Hm . (1.3.21)

Definition 1.35 [Weak Solution]
Any function y ∈ Hm(Ω) for which (1.3.21) holds will be called weak solution since it is not necessarily
in the space C2m(Ω) ∩ C0(Ω̄).

Note that the ellipticity of the operator L does not guarantee the ellipticity of the bilinear form a(·, ·).
This can only be ensured by requiring additional conditions of the domain Ω and the coefficients aα,β .
One sufficient criterion for ellipticity (1.3.11) in case m = 1 is a bounded domain Ω and

aα,β = 0, if |α|+ |β| ≤ 1 . (1.3.22)

In case m > 1, additional prerequisites to the coefficient functions aα,β are required, see [41].

Remark 1.36 The Laplacian operator (1.3.5) is of the form (1.3.22) and the induced bilinear form is
thus elliptic. This also holds for the operator (1.3.6).
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The other prerequisite of the bilinear form a(·, ·) required for the Theorem of Lax-Milgram is conti-
nuity, which follows directly from the following estimate taken from [41]:

|a(y, v)| ≤
∑
α,β

‖aα,β‖L∞(Ω)‖y‖Hm(Ω)‖v‖Hm(Ω) . (1.3.23)

Thus, the homogeneous problem (1.3.17) has a unique solution in Hm(Ω).

Example 1.37 The bilinear form for the Helmholtz Problem (Example 1.33) can be written as

a(y, v) = (∇y,∇v)L2
+ a0 (y, v)L2

. (1.3.24)

1.3.3 Galerkin Method

With the elliptic PDE (1.3.17) now stated as a variational problem in weak formulation, we can
go on to solve (1.3.21) numerically. Thus we discretize (1.3.21) using elements from a finite di-
mensional closed subspace Sj ⊂ H of level j as trial functions. Let Φj be a basis for this space
Sj := S(Φj) := span {φj,k | k ∈ ∆j} for some ordered finite index set ∆j . The task is now to find the
unique element yj ∈ Sj with

a(yj , vj) = 〈f, vj〉 for all vj ∈ Sj . (1.3.25)

The coefficients in the expansion yj =
∑
k∈∆j

yj,kφj,k are compiled in the vector yj :=
(
(yj,k)k∈∆j

)T .
Choosing vj = φj,k subsequentially for all k ∈ ∆j , we obtain the linear system of equations∑

k∈∆j

yj,k a(φj,i, φj,k) = 〈f, φj,i〉, i ∈ ∆j . (1.3.26)

Abbreviating Aj := (a(φj,i, φj,k))i,k∈∆j
and fj := 〈f, φj,i〉i∈∆j

this reads shortly as

Aj yj = fj . (1.3.27)

If follows from the symmetry and ellipticity of a(·, ·) that Aj is symmetric positive definite, i.e.,
xT Aj x > 0 for all 0 6= x ∈ IR#∆j . In particular, this means that Aj is non-singular and a unique
solution yj = A−1

j fj to (1.3.27) exists. Note that the vector yj determines the unique element
yj =

∑
k∈∆j

yj,k φj,k ∈ Sj which is the solution to (1.3.25).

Definition 1.38 [Discretization Error]
We call the level dependent constant

hj := dist(y, Sj) := inf
vj∈Sj

‖y − vj‖H, y ∈ H, (1.3.28)

the discretization error of level j (with respect to Sj).

Of special importance is the following result:

Lemma 1.39 [Céa− Lemma]
Let y resp. yj denote the solution of the variational problem (1.3.21) resp. (1.3.25) in H resp. Sj ⊂ H.
Then it follows that

‖y − yj‖H . inf
vj∈Sj

‖y − vj‖H . (1.3.29)

In other words, the Galerkin solution yj is (up to a constant) of the same error to the weak solution y as
the best approximation of the trial space Sj . An immediate consequence is the following

Corollary 1.40 Let the subspaces Sj be nested and their union dense in H, i.e.,

Sj ⊂ Sj+1, clos
H

⋃
j

Sj = H, (1.3.30)

then the Galerkin scheme converges, i.e.,

lim
j→∞

‖y − yj‖H = 0 . (1.3.31)
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Typical choices for the trial spaces Sj are finite element spaces.
After discretization, the central issue is to solve (1.3.27) numerically. The amount of computational work
necessary to obtain yj for given fj and Aj increases with the number of unknowns #∆j .
In general, discretizations are arranged such that the size of the system {φj} grows exponentially in
j. Thus, the matrix Aj can be extremely large which prohibits the use of direct solvers for (1.3.27).
Also, Aj is ill-conditioned for any single-scale basis Φj , i.e., κ2(Aj)� 1, which induces increasingly slow
convergence and prohibitively high iteration numbers for iterative solvers.
We seek a strategy which is of optimal complexity such that yj is obtained with O(#∆j) operations and
thus in linear time. To achieve this, we aim at constructing preconditioners Cj for Aj which have the
property that

κ2(C
−1/2
j AjC

−1/2
j )� κ2(Aj)

holds. Ideally, we will later see that preconditioning can yield

κ2(C
−1/2
j AjC

−1/2
j ) ∼ 1

independent of j.
The next section will therefore be concerned with ingredients from multiscale analysis which allow for
fast iterative solving of the equation (1.3.27) by providing a version of Aj which is uniformly well-
conditioned. The solution vector yj will be proved to be computable within preset discretization error
accuracy in linear complexity in the total number of unknowns.
Although later control problems with Dirichlet boundary conditions and saddle point problems will be
considered, we demonstrate these techniques for convenience for the simple system (1.3.27) first.
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2 Wavelets and Multiresolution Analysis

This section provides an introduction into the theory of wavelets and their construction by means of
multiresolution analysis. Although the theoretical groundwork for wavelets was laid as early as the
beginning of the 19th-century, it was not until 1909 that the Hungarian mathematician Alfred Haar
proposed a piecewise constant, refinable, L2-orthogonal and compactly supported function suitable for
level dependent signal processing. This function is today known as the first wavelet (see [63]). However,
the Haar-Wavelet is non-differentiable and thus not suitable for elliptic PDEs, since a weak solution is at
least in H1 and this means, by the Embedding Theorem 1.26, it has to be continuous.
In the 1980’s, wavelets constructed by I. Daubechies featured compact support and L2-orthogonality,
yet they were only given implicitly by their coefficients. The later introduced concept of biorthogonality
has proved of value since, as the important reconstruction and smoothness properties can now be sought
independently.
Today, B-spline-based wavelets with arbitrary smoothness and compact support can be constructed, as
first outlined in [19]. These wavelets are the result of a strict theoretical framework and a complex
construction process which we will describe in the following sections and which exhibits a beautiful and
elegant piece of modern functional analysis.

2.1 Multiscale Decompositions of Function Spaces

The content of this section is based on [25], [46] and [57].

2.1.1 Basics

Let ∆ be a (possibly infinite) index set and #∆ its cardinality. Then `2(∆) is the Banach space of
elements v ∈ `2(∆) for which the norm

‖v‖`2(∆) :=

(∑
k∈∆

|vk|2
)1/2

(2.1.1)

is finite. The elements v ∈ `2(∆) are always regarded as column vectors of possibly infinite length.
Likewise, we define a (countable) collection of functions Φ in a Hilbert space H as a column vector,
whose elements are sorted accordingly and in a fixed order. This enables us to introduce the following
shorthand notation for an expansion of Φ with a coefficient vector c,

cTΦ :=
∑
φ∈Φ

cφφ . (2.1.2)

Recall from Section 1 the dual form 〈v, ṽ〉 := 〈v, ṽ〉H×H′ := ṽ(v). Consequently, for any ṽ ∈ H′, the
quantity 〈Φ, ṽ〉 is interpreted as a column vector and 〈ṽ,Φ〉 as a row vector of expansion coefficients
〈φ, ṽ〉, 〈ṽ, φ〉, φ ∈ Φ, respectively. Furthermore, for any two collections Φ ⊂ H, Θ ⊂ H′ of functions, we
frequently work with (possibly infinite) matrices of the form

〈Φ,Θ〉 := (〈φ, θ〉)φ∈Φ,θ∈Θ . (2.1.3)

For any finite subset Φ ⊂ H the linear span of Φ is abbreviated as

S(Φ) := span {Φ} . (2.1.4)

In order to make a function w ∈ H numerically accessible, its expansion coefficients w in a basis Φ of H
should be unique and stable.

Definition 2.1 [Riesz basis of H]
A family Φ = {φj} of elements of a separable Hilbert space H is called Riesz basis, if and only if the
functions in {φj} are linearly independent and for every c ∈ `2 one has

‖c‖`2 ∼ ‖cTΦ‖H, (S)(2.1.5)

which is called Riesz stability or just stability.

We will later derive conditions under which multiscale wavelet bases are automatically Riesz bases.
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2.1.2 Multiresolution Analysis of H

Recalling Definition 1.3, the inner product of H is termed (·, ·) := (·, ·)H, associated with the norm ‖ · ‖H.
The elements of H shall be functions living on a bounded domain Ω ⊂ IRn with values in IR. We first
consider the univariate case n = 1. In case Ω ⊂ IRn, n > 1, a tensor product approach is often sufficient
for simple domains. We will discuss tensor products and their application in multiresolution analysis
frameworks in Section 2.4.

Definition 2.2 [Multiresolution Analysis (MRA) of H]
For a fixed parameter j0 ∈ IN0, a multiresolution analysis S of H consists of closed subspaces Sj of
H, called multiresolution spaces, which are nested such that their union is dense in H,

Sj0 ⊂ . . . ⊂ Sj ⊂ Sj+1 ⊂ . . . ⊂ H, clos
H

(
⋃
j≥j0

Sj) = H . (R)(2.1.6)

Specifically, the multiresolution spaces Sj will be of type

Sj = S(Φj), Φj = {φj,k | k ∈ ∆j}, (2.1.7)

each defined by a finite dimensional basis Φj with ∆j being a level dependent finite index set. The bases
(Φj)j≥j0 will be assumed to be uniformly stable in the sense of Definition 2.1, i.e., property (S)(2.1.5)
holds uniformly for every j ≥ j0.

The index j always denotes the level of resolution or refinement level with j0 being the coarsest
level. We shall always deal with functions φj,k which have the locality property, i.e., they are compactly
supported with

diam(suppφj,k) ∼ 2−j . (L)(2.1.8)

For this reason the collection Φj is termed single-scale basis, since all its members live on the same
scale j. It follows from (S)(2.1.5) with c = ek, that the φj,k must be scaled such that

‖φj,k‖H ∼ 1

holds. Here, k is called the positional index describing the location of the element φk in the space V.
Considering for a moment Ω = IR, the basis functions for Φj can be given by translation and dilation of
a single function φ called the generator, i.e.,

φj,k(x) := (2j)1/2φ(2jx− k), k ∈ ZZ, j ≥ j0 . (2.1.9)

In the view of the locality condition (L)(2.1.8), (2.1.9) means that diam suppφj+1,k ∼ 1
2 diam suppφj,k

and therefore Φj can model more detail information with increasing level, which led to the designation
multiresolution analysis. Here φ is called the generator of the MRA (R)(2.1.6).
It is easy to verify that the {φj,k}j≥j0 form a Riesz basis for the space Sj with the same constants as
in the case j = j0. Since the MRA spaces are nested, there exists a special sequence of coefficients
{mk}k∈ZZ ∈ `2(ZZ) such that for every x ∈ Ω

φ(x) =
∑
k∈ZZm

mkφ(2x− k) .

Remark 2.3 For the cardinal B-splines, the expansion coefficients can be found in [33], see also
Appendix B.

It follows that such a refinement relation can also be expressed for any of the functions φj,k, j ≥ j0,
leading to the existence of matrices Mj,0 = (mj,0

r,k)r∈∆j+1,k∈∆j
such that the two-scale relation

φj,k =
∑

r∈∆j+1

mj,0
r,kφj+1,r, k ∈ ∆j , (2.1.10)

is satisfied. The sequence mj
k := (mj,0

r,k)r∈∆j+1 ∈ `2(∆j+1) is called mask and each element a mask
coefficient. Since every function φj,k has compact support and only a finite number of functions φj+1,k

22



2.1. Multiscale Decompositions of Function Spaces

have support intersecting with the support of {φj,k}, non-zero mask coefficients only appear for these
functions on level j + 1. This means mj

k has a uniformly, i.e., level independent, bounded number of
non-zero entries. This will be crucial in the application of the fast wavelet transform in Section 2.1.3.
In the sequel, it will be convenient to write (2.1.10) as a matrix-vector equation

Φj = MT
j,0Φj+1 . (2.1.11)

Thus, the mj
k constitute the columns of the matrix Mj,0 ∈ IR(#∆j+1)×(#∆j). Any family of functions

satisfying an equation of this form will be called refinable. It is known also for Ω ⊂ IR that nestedness
(R)(2.1.6) and stability (S)(2.1.5) alone imply the existence of such matrices (see [25]). Obviously, Mj,0

is a linear operator from the space `2(∆j) into the space `2(∆j+1), i.e., recalling Definition 1.1,

Mj,0 ∈ L(`2(∆j); `2(∆j+1)) .

This matrix is also uniformly sparse which means that the number of entries in each row or column
are uniformly bounded. Because of the two-scale relation (2.1.10) every c = cTj Φj has a representation
c = cTj+1Φj+1, which, in recognition of the norm equivalence (S)(2.1.5) applied to both Φj+1 and Φj ,
yields

‖cj‖`2 ∼ ‖cTj Φj‖H = ‖cTj MT
j,0Φj+1‖H = ‖(Mj,0cj)TΦj+1‖H ∼ ‖Mj,0cj‖`2 ,

and consequently, with the definition of operator norm (1.1.2), it follows that

‖Mj,0‖ = O(1), j ≥ j0 .

Because the spaces Φj are nested and their infinite union S is dense in H, a basis for H can be assembled
from the functions which span the complement of two successive spaces Φj and Φj+1, i.e.,

S(Φj+1) = S(Φj)⊕ S(Ψj), (2.1.12)

if we define
Ψj := {ψj,k | k ∈ ∇j} ⊂ S(Φj+1), ∇j := ∆j+1 \∆j . (2.1.13)

The complement spaces Wj := S(Ψj), j ≥ j0, are called detail spaces.

Definition 2.4 [Wavelets]
The basis functions ψj,k, j ≥ j0, k ∈ ZZn, of the detail spaces Ψj , j ≥ j0, are denoted as wavelet
functions or shortly wavelets.

There is more than one way to choose a basis for the space Wj . One option would be to use the
orthogonal complement. Of special interests for the case Ω = IR are those bases of wavelet spaces which
can be constructed from a mother wavelet ψ by scaling and dilation in the sense of (2.1.9),

ψj,k(x) := (2j)1/2ψ(2jx− k), k ∈ ZZ, j ≥ j0 . (2.1.14)

Thus, if the mother wavelet is compactly supported, the wavelets also satisfy

diam suppψj,k ∼ 2−j . (2.1.15)

Wavelets of this kind entail a similar band-like structure in Mj,1 as seen in Mj,0. For this reason, we shall
restrict all following discussions to the case of compactly supported generators and compactly supported
wavelets. Since every ψj,k ∈ Ψj is also in the space Φj+1 it has a unique representation

ψj,k =
∑

r∈∆j+1

mj,1
r,kφj+1,r, k ∈ ∇j , (2.1.16)

which can again be expressed as a matrix-vector equation of the form

Ψj = MT
j,1Φj+1 (2.1.17)

with a matrix Mj,1 ∈ IR(#∆j+1)×(#∇j) . Furthermore, equation (2.1.12) is equivalent to the fact that the
linear operator composed of Mj,0 and Mj,1,

Mj := (Mj,0,Mj,1) :
`2(∆j)× `2(∇j) −→ `2(∆j+1)

(c,d) 7−→ Mj,0c + Mj,1d
(2.1.18)

23



Section 2. Wavelets and Multiresolution Analysis

is an invertible mapping from `2(∆j ∪∇j) onto `2(∆j+1). The refinement relations (2.1.11) and (2.1.17)
combined lead to (

Φj
Ψj

)
=

(
MT

j,0

MT
j,1

)
Φj+1 =: MT

j Φj+1, (2.1.19)

called decomposition identity. This means Mj performs a change of bases in the space Φj+1. Of
course, we want Mj to have positive traits which can be exploited for numerical purposes, such as
sparseness and invertibility.

Definition 2.5 [Stable Decomposition]
If the union {Φj ∪Ψj} is uniformly stable in the sense of (S)(2.1.5), i.e.,

‖c‖`2(∆j+1) ∼ ‖(Φ
T
j ,Ψ

T
j )c‖H,

then {Φj ,Ψj} is called a stable decomposition of Φj+1.

Note that Mj as a basis transformation must be invertible. We denote its inverse by Gj , which we
conveniently write in block structure as

M−1
j =: Gj =

(
Gj,0

Gj,1

)
, (2.1.20)

with Gj,0 ∈ IR(#∆j)×(#∆j+1) and Gj,1 ∈ IR(#∇j)×(#∆j+1). It is known, see [24] for example, that
{Φj ∪Ψj} is uniformly stable if and only if

‖Mj‖, ‖Gj‖ = O(1), j →∞ . (2.1.21)

This condition can be met by any matrix and its inverse with entries whose absolute values are uniformly
bounded, e.g., constant, and which are uniformly sparse, i.e., the number of entries in each row and
column is independent of j. However, the inverses of sparse matrices are usually densely populated
which has made actual construction burdensome in the past. It also draws special attention to the above
mentioned choice of the basis Ψj , which determines Mj,1 through the refinement relation (2.1.16).

Definition 2.6 [Stable Completion]
Any matrix Mj,1 which completes Mj,0 to a square (#∆j+1)×(#∆j+1) matrix, such that Mj is invertible
and (2.1.21) is satisfied, is called stable completion.

In other words, the search for a basis Ψj of space Wj , consisting of compactly supported wavelets, can
be exchanged for the algebraic search of refinement matrices, which are uniformly sparse with uniformly
sparse inverses, too. There is a special type of sparse matrices Mj , whose inverses are automatically
sparse, namely, orthogonal matrices.

Definition 2.7 [Orthogonal Wavelets]
The wavelets are called orthogonal if

〈Ψj ,Ψj〉 = I, (2.1.22)

which is true, if and only if the special situation occurs that Mj is orthogonal, that is,

Gj = M−1
j = MT

j . (2.1.23)

Remark 2.8 Orthogonality will later be extended by the principle of biorthogonality in Section 2.1.4 .

Considering Gj again, it is clear that applying GT
j on both sides of (2.1.19) results in the so called

reconstruction identity,

Φj+1 = GT
j

(
Φj
Ψj

)
= GT

j,0Φj + GT
j,1Ψj , (2.1.24)

which enables us now to freely change representations of functions between the single-scale basis
Φj+1 and the multiscale basis {Φj ∪Ψj}.

Remark 2.9 In case Ω $ IR, definitions (2.1.9) and (2.1.14) can be applied only for a limited range of
the shifting parameter k. At the boundary ∂Ω of Ω it might not be applicable at all. Constructions of
boundary adapted generators (for various boundary conditions) exist that the assertions of the previous
section still hold true in this case.
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2.1. Multiscale Decompositions of Function Spaces

2.1.3 Multiscale Transformation

Repeating (2.1.12), starting with a fixed finest level of resolution J up to the coarsest level j0, yields a
multiscale decomposition for the single-scale space SJ = S(ΦJ),

S(ΦJ) = S(Φj0)⊕
J−1⊕
j=j0

S(Ψj) . (2.1.25)

Thus, every v ∈ S(ΦJ) with its single-scale representation

v = cTJΦJ =
∑
k∈∆J

cJ,kφJ,k (2.1.26)

can be written in multiscale form

v = dT(J)Ψ(J) := cTj0Φj0 + dTj0Ψj0 + . . .+ dTJ−1ΨJ−1 (2.1.27)

with respect to the wavelet basis

Ψ(J) := Φj0 ∪
J−1⋃
j=j0

Ψj =
J−1⋃

j=j0−1

Ψj , Ψj0−1 := Φj0 . (2.1.28)

We will use the abbreviation
dT ≡ dT(J) := (cTj0 ,d

T
j0 , . . . ,d

T
J−1) (2.1.29)

for the multiscale vector and
cT ≡ cT(J) := cTJ (2.1.30)

for the single-scale coefficients, omitting the index J , if it does not create confusion. The transformation
responsible for computing the single-scale coefficients from the multiscale wavelet coefficients is commonly
referred to as the wavelet transform or reconstruction algorithm

TJ : `2(∆J) −→ `2(∆J), d(J) 7→ c(J), (2.1.31)

which, in recognition of the decomposition identity (2.1.19), will involve the application of Mj . In fact,
(2.1.18) states

cTj Φj + dTj Ψj = (Mj,0cj + Mj,1dj)TΦj+1 =: (cj+1)TΦj+1,

which, if iterated starting from level j0 to level J , can be visualized as a pyramid scheme:

Mj0,0 Mj0+1,0 MJ−1,0

cj0 −→ cj0+1 −→ cj0+2 −→ · · · cJ−1 −→ cJ
Mj0,1 Mj0+1,1 MJ−1,1

↗ ↗ ↗ ↗
dj0 dj0+1 dj0+2 · · · dJ−1

(2.1.32)

By this scheme, the operator TJ can be written as a product of levelwise operators

TJ = TJ,J−1 · · ·TJ,j0 , (2.1.33)

where each factor has the form

TJ,j :=
(

Mj 0
0 I(#∆J−#∆j+1)

)
∈ IR(#∆J )×(#∆J ) . (2.1.34)

Conversely, the inverse wavelet transform, also known as decomposition algorithm,

T−1
J : `2(∆J) −→ `2(∆J), c(J) 7→ d(J), (2.1.35)

can be written in a similar product structure by applying the inverses of the matrices TJ,j in reverse
order. The inverses of TJ,j can be constructed as

T−1
J,j :=

(
Gj 0
0 I(#∆J−#∆j+1)

)
∈ IR(#∆J )×(#∆J ), (2.1.36)
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Section 2. Wavelets and Multiresolution Analysis

and the inverse wavelet transform now takes on the form

T−1
J = T−1

J,j0
· · ·T−1

J,J−1 . (2.1.37)

The corresponding pyramid scheme is

GJ−1,0 GJ−2,0 Gj0,0

cJ −→ cJ−1 −→ cJ−2 −→ · · · cj0+1 −→ cj0
GJ−1,1 GJ−2,1 Gj0,1

↘ ↘ ↘ ↘
dJ−1 dJ−2 · · · dj0

(2.1.38)

Remark 2.10 Since Mj and Gj have only a uniformly bounded number of non-zero entries in each
row and column, each can be applied with a number of arithmetic operations that is of order O(#∆j+1).
This obviously also holds for the operators TJ,j,T−1

J,j. Therefore, the application of operators TJ ,T−1
J

will always be computed by successively applying each operator TJ,j,T−1
J,j. We strongly emphasize that

the matrices given by TJ ,T−1
J are never explicitly computed and stored in computer memory.

Such an action results in a complexity of O(#∆j+1 log(#∆j+1)) and thus an unnecessary computational
overhead.

Let
Nj := #∆j

be the length of the coefficient vector cj on level j. This leads to the following

Proposition 2.11 The cost of applying TJ or T−1
J using the pyramid scheme is of optimal linear com-

plexity, that is, of order O(NJ) = O(dimS(ΦJ)). This justifies the expression Fast Wavelet Trans-
form.

Proof: Since the support of the basis functions φj,k halves from level to level, their number #∆j must
double. It follows that #∆j grows exponentially in j and so does #∇j . Assuming #∆j+1 ≈ 2 #∆j , it
follows that the complexity of applying Mj or Gj also doubles for each level. But starting from the
highest level J this means that the cost of calculating MJ−1cJ−1 is halve of what it is for MJcJ . Then
Nj−1 ≈ Nj

2 and the cost of applying TJ in the sense of (2.1.33) is roughly

O(NJ +NJ−1 + . . .+Nj0+1) = O(NJ(1 + 2−1 + 2−2 + . . .+ 2−(J−j0+1))) = O(2NJ) = O(NJ) .

Remark 2.12 In contrast, the discrete Fast Fourier Transform needs an overall amount of
O(NJ log(NJ)) arithmetic operations, see [38].

The fast wavelet transform will play a major part in the representation and fast assembly of operaters
between Hilbert spaces with wavelet bases, see Section 2.2.3. It will be essential for preconditioning of
the systems of linear equations in Section 4.
By (R)(2.1.6) and (2.1.25), a basis for the whole space H can be given by letting J →∞ in (2.1.28),

ΨII :=
∞⋃

j=j0−1

Ψj = {ψj,k | (j, k) ∈ II}, II :=
∞⋃

j=j0−1

{{j} × ∇j}, (2.1.39)

recalling Ψj0−1 := Φj0 and ∇j0−1 := ∆j0 . For any elements λ := (j, k) ∈ II we define |λ| := j. The
interrelation between TJ and ΨII is displayed in the next theorem, taken from [25].

Theorem 2.13 The multiscale Transformations TJ ,T−1
J are well-conditioned,

‖TJ‖, ‖T−1
J ‖ = O(1), J ≥ j0, (2.1.40)

if and only if the collection ΨII defined by (2.1.39) is a Riesz-Basis for H, i.e.,

‖d‖`2(II) ∼ ‖d
TΨII‖H, for all d ∈ `2(II) . (2.1.41)

This can be concluded from (2.1.21), see [24].
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2.1. Multiscale Decompositions of Function Spaces

2.1.4 Dual Multiresolution Analysis of H′

Let Φj as before be a Riesz-Basis of a Hilbert space H decomposed into an MRA as in (R)(2.1.6). By
the Riesz representation theorem (see [3]), there exists a dual basis Φ̃j ⊂ H′ in the dual Hilbert space
of H. Of course, this basis Φ̃j is of the same cardinality as Φj and is also a Riesz basis of H′. Moreover,
it is part of a second multiresolution analysis S̃ of H′, and it holds

〈Φj , Φ̃j〉 = I . (2.1.42)

We define the spaces
S̃j := S(Φ̃j), Φ̃j := {φ̃j,k | k ∈ ∆j}, (2.1.43)

where Φ̃j are designated dual generator bases, or just dual generators. In this setting, we refer
to Φj of (2.1.7) as primal generator bases or primal generators. Furthermore, Pj : H → Sj and
P̃j : H′ → S̃j are projectors onto the spaces Sj and S̃j defined by

Pjv := 〈v, Φ̃j〉Φj , v ∈ H, (2.1.44)

P̃jv := 〈v,Φj〉Φ̃j , v ∈ H′ . (2.1.45)

These operators have the projector property

PrPj = Pr, P̃rP̃j = P̃r, r ≤ j, (2.1.46)

which entails that Pj − Pj−1 and P̃j − P̃j−1 are also projectors. We can now define the primal and dual
detail spaces employing these projectors as

Wj := Im(Pj+1 − Pj),
W̃j := Im(P̃j+1 − P̃j), j ≥ j0 .

(2.1.47)

Setting P̃j0−1 = Pj0−1 := 0, we can write

Sj0 = Wj0−1 = Im(Pj0 − Pj0−1), S̃j0 = W̃j0−1 = Im(P̃j0 − P̃j0−1) .

The detail spaces Wj can also be expressed by

Wj = S(Ψj) = Sj+1 ∩ (S̃j)⊥

and concordantly the dual detail spaces as

W̃j = S(Ψ̃j) = S̃j+1 ∩ (Sj)⊥ .

Nestedness and stability again imply that Φ̃j is refinable with some matrix M̃j,0 similar to (2.1.11),

Φ̃j = M̃T
j,0Φ̃j+1 . (2.1.48)

The main task is now to not only construct wavelet bases {Ψ̃j}j≥j0 such that

S̃J = S(Φ̃j0) ∪
J⋃

j=j0

S(Ψ̃j)

is an MRA in H′ analogously to (2.1.7), but also to ensure that the following biorthogonality conditions

S(Φj) ⊥ S(Ψ̃j), S(Φ̃j) ⊥ S(Ψj) j ≥ j0,
S(Ψj) ⊥ S(Ψ̃r), j 6= r,

(2.1.49)

are satisfied. The connection between the concept of stable completions, the dual generators and wavelets
is made by the following theorem taken from [14], see, e.g. [46].
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Theorem 2.14 Suppose that the biorthogonal collections {φj}∞j=j0 , {φ̃j}
∞
j=j0

are both uniformly stable

and refinable with refinement matrices Mj,0, M̃j,0, e.g.,

Φj = MT
j,0Φj+1, Φ̃j = M̃T

j,0Φ̃j+1,

and that they satisfy the duality condition (2.1.42). Assume that M̌j,1 is any stable completion of Mj,0

such that
M̌j := (Mj,0, M̌j,1) = Ǧ−1

j

satisfies (2.1.21). Then
Mj,1 := (I −Mj,0M̃T

j,0)M̌j,1

is also a stable completion of Mj,0, and Gj = M−1
j = (Mj,0,Mj,1)−1 has the form

Gj =
(

M̃T
j,0

Ǧj,1

)
.

Moreover, the family of functions

Ψj := MT
j,1Φj+1, Ψ̃j := Ǧj,1Φ̃j+1

form biorthogonal systems

〈Ψj , Ψ̃j〉 = I, 〈Ψj , Φ̃j〉 = 〈Φj , Ψ̃j〉 = 0, (2.1.50)

such that
S(Ψj) ⊥ S(Ψ̃r), j 6= r, S(Φj) ⊥ S(Ψ̃j), S(Φ̃j) ⊥ S(Ψj) .

Especially (2.1.42) combined with (2.1.50) implies that the wavelet spaces

ΨII =
∞⋃

j=j0−1

Ψj , Ψ̃II :=
∞⋃

j=j0−1

Ψ̃j := Φ̃j0 ∪
∞⋃
j=j0

Ψ̃j , (2.1.51)

are biorthogonal,
〈ΨII , Ψ̃II〉 = I . (B)(2.1.52)

Definition 2.15 [Biorthogonal Wavelets]
Two such Riesz-Bases ΨII of a MRA S ⊂ H and Ψ̃II of MRA S̃ ⊂ H′ with property (B)(2.1.52) are called
biorthogonal wavelets. ΨII are called primal wavelets and Ψ̃II dual wavelets.

With these bases, every v ∈ H has a unique expansion

v =
∞∑

j=j0−1

〈v, Ψ̃j〉Ψj =:
∞∑

j=j0−1

vTj Ψj =: vTΨII (2.1.53)

and every w ∈ H′ has a corresponding unique expansion

w =
∞∑

j=j0−1

〈w,Ψj〉Ψ̃j =:
∞∑

j=j0−1

w̃T
j Ψ̃j =: w̃T Ψ̃II , (2.1.54)

and these expansions satisfy

‖v‖H ∼ ‖〈v, Ψ̃II〉
T
‖`2(II), ‖w‖H′ ∼ ‖〈w, Ψ̃II〉

T
‖`2(II) . (2.1.55)

In case H = H′ it follows that every v ∈ H has two unique expansions

v =
∞∑

j=j0−1

〈v,Ψj〉Ψ̃j =
∞∑

j=j0−1

〈v, Ψ̃j〉Ψj . (2.1.56)
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Accordingly, (2.1.53) is called primal expansion and (2.1.54) dual expansion. In this case, also the
following norm equivalences hold for every v ∈ H:

‖v‖H ∼ ‖〈v, Ψ̃II〉
T
‖`2(II) ∼ ‖〈v,Ψ

II〉T ‖`2(II) . (2.1.57)

Two useful expansions can be derived in this case of H = H′ by applying (2.1.53) for every basis function
of Ψ̃II and (2.1.54) for ΨII ,

ΨII = 〈ΨII ,ΨII〉Ψ̃II =
(
ΨII ,ΨII

)
Ψ̃II =: MHΨ̃II , (2.1.58)

Ψ̃II = 〈Ψ̃II , Ψ̃II〉ΨII =
(
Ψ̃II , Ψ̃II

)
Ψ̃II =: M̃H′ΨII , (2.1.59)

which, when combined, bring forward an identity for the Gramian matrices MH, M̃H′ ,

MHM̃H′ =
(
ΨII ,ΨII

)(
Ψ̃II , Ψ̃II

)
= I . (2.1.60)

The dual wavelet transformation is designated as

T̃J : d̃(J) 7−→ c̃(J) (2.1.61)

and from the biorthogonality equations (2.1.42) and (B)(2.1.52), we can deduct

I = 〈Ψ̃II
J ,Ψ

II
J 〉 = 〈T̃T

J Φ̃J ,TT
JΦJ〉 = T̃〈Φ̃J ,ΦJ〉TT

J = T̃JTT
J

or T̃J = T−T
J and, consequently, T̃−1

J = TT
J , see Figure 2.1. It follows that T̃J has the same properties

as TJ , e.g. uniform sparseness and uniformly bounded condition numbers.
In Section 2.2.3 we will show how to apply TJ for preconditioning of linear elliptic operators. To this
end, the assembly of operators is first done in terms of the single-scale functions Φj , and the fast wavelet
transform is used to attain the wavelet representation. Hence, assembly is simple and computation fast.
It should be pointed out that the dual basis functions Φ̃j and wavelets Ψ̃j are not needed explicitly in
this thesis. All which must be known is the dual wavelet transform, which is given by Figure 2.1.

primal dual

reconstruction
TJ : d 7−→ c
TJ = T̃−T

J

T̃J : d̃ 7−→ c̃
T̃J = T−T

J

decomposition
T−1
J : c 7−→ d
T−1
J = T̃T

J

T̃−1
J : c̃ 7−→ d̃
T̃−1
J = TT

J

Figure 2.1: Correlation of primal and dual multiscale transformations
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2.2 Multiresolutions of L2 and Hs

In the view of the application of the MRA framework to PDEs, we now need to consider elements of
the Hilbert space H to be functions f : Ω → IR,Ω ⊂ IR, lying in the function space L2 or a subspace
Hs ⊂ L2. Let S be a multiresolution sequence of H as in Section 2.1.2, possibly incorporating boundary
conditions of Ω.
Taking H = L2(Ω) conforms to the case H = H′ with the dual pairing

〈f, g〉L2(Ω)×L2(Ω) :=
∫

Ω

f(x)g(x)dµ, for all f, g ∈ L2(Ω) .

In case H = Hs, s > 0, recall that H′ = (Hs)′, s > 0, is a significantly larger space than Hs and it holds

Hs(Ω) ⊂ L2(Ω) ⊂ (Hs(Ω))′, s > 0, (2.2.1)

where the embedding is continuous and dense. This identity is an example of a Gelfand triple.

2.2.1 Approximation and Regularity Properties

Approximation properties refer to the ability to reproduce certain classes of functions with linear combi-
nations of Φj . Of special interest are the spaces of polynomials

Πr :=
{∑

aix
i : 0 ≤ i ≤ r − 1

}
. (2.2.2)

It will be important in the sequel that there are constants d, d̃ ∈ IN such that the space Πd is contained
in S(Φj0) and accordingly Πd̃ ⊂ S(Φ̃j0), and the following identities hold:

xr =
∑
l

〈(·)r, φ̃j0(· − k)〉φj0(x− k), r = 0, . . . , d− 1, (P)(2.2.3)

xr =
∑
l

〈(·)r, φj0(· − k)〉φ̃j0(x− k), r = 0, . . . , d̃− 1 . (P̃)(2.2.4)

Since the spaces S(Φj), S(Φ̃j) are nested, this also holds true for S(Φj), S(Φ̃j), j ≥ j0. By the biorthog-
onality conditions (2.1.50), this yields the so called moment conditions,∫

Ω

xrψj,k(x)dµ = 0, r = 0, . . . , d̃− 1, (V)(2.2.5)

∫
Ω

xrψ̃j,k(x)dµ = 0, r = 0, . . . , d− 1, (Ṽ)(2.2.6)

which means that the wavelets ψj,k, ψ̃j,k are orthogonal to all polynomials up to order d̃, d, respectively.
The wavelets ψj,k, ψ̃j,k are said to have d̃-, d-th order vanishing moments.
Now we turn to regularity properties, commonly referred to as smoothness. We quote from [59] that
every generator φ ∈ L2 of an MRA S is also contained in Hs for a certain range [0, s), s > 0. We define
regularity properties which will play an integral part in the norm equivalence proposition in Section 2.2.2:

Definition 2.16 The regularity of the MRAs S and S̃ is characterized by

γ := sup {s |S(Φj) ⊂ Hs, j ≥ j0}, γ̃ := sup {s |S(Φ̃j) ⊂ Hs, j ≥ j0} . (2.2.7)

It is necessary to find the optimal balance between the three properties regularity γ, γ̃ (2.2.7), poly-
nomial exactness d (P)(2.2.3) and vanishing moments d̃ (V)(2.2.5) of the trial spaces S(Φj) for any
problem at hand.
The choice of d, d̃ is not entirely free. Existence of a compactly supported dual scaling function Φ̃j was
proved in [22] for

d̃ > d, d+ d̃ = even . (2.2.8)
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In case of biorthogonal spline wavelets it is known that the support of the generators is linked to the
polynomial exactness (see [19])

suppφj,k = O(d), supp φ̃j,k = O(d̃) . (2.2.9)

This in turn determines the length of the mask (2.1.10) and, thus, the constants involving the cost of
applying the fast wavelet transform (2.1.31).
We will see in the following sections that the wavelet discretization of a differential operator
L : H+t → (H+t)′ of order 2t requires γ, γ̃ > |t|.

2.2.2 Norm Equivalences for Sobolev Spaces Hs ⊂ L2

The inner product (·, ·)Hs and norm ‖·‖Hs of Sobolev spaces Hs, s ∈ IR, cannot be expressed analytically
for arbitrary values of s like for L2. Therefore, we must resort to norm equivalences which we will introduce
and analyze now.
Up to now, Riesz stability is given uniformly for all spaces Sj , j ≥ j0, see Definition 2.2. In general,
this does not immediately imply stability with respect to several levels, as is needed for infinite sums
of elements of these spaces. Results of this kind combined with Theorem 2.13 ensure the Riesz-Basis
properties (2.1.41) and (2.1.55) of ΨII . To this end, regularity and approximation properties are required
of S and S̃, which are formalized in the following theorem from [26], see also [32] and [45].

Theorem 2.17 Let S := {Sj}j≥j0 and S̃ := {S̃j}j≥j0 be multiresolution sequences with bases Φj,Φ̃j
satisfying properties Stability (S)(2.1.5), Refinability (R)(2.1.6), Locality (L)(2.1.8) and Biorthogonality
(B)(2.1.52) and let Pj,P̃j be defined by (2.1.44), (2.1.45). If S,S̃ both satisfy the Jackson inequality

inf
vj∈Sj

‖v − vj‖L2(Ω) . 2−sj‖v‖Hs(Ω), v ∈ Hs(Ω), 0 ≤ s ≤ d, (2.2.10)

and the Bernstein inequality

‖vj‖Hs(Ω) . 2sj‖vj‖L2(Ω), vj ∈ Sj, 0 ≤ s < γ, (2.2.11)

for the spaces Sj = Sj , S̃j with order d = d, d̃ and γ = γ, γ̃, respectively, then for

0 < σ := min {d, γ}, 0 < σ̃ := min {d̃, γ̃}

one obtains the norm equivalences

‖v‖2Hs(Ω) ∼
∞∑
j=j0

‖(Pj − Pj−1)v‖2Hs(Ω)

∼
∞∑
j=j0

22sj‖(Pj − Pj−1)v‖2L2(Ω)

∼
∞∑

j=j0−1

22sj‖〈v, Ψ̃j〉
T
‖2`2(∇j)

, s ∈ (−σ̃, σ) .

Note that here is set Hs = (H−s)′ for s < 0.

Proof: Since this is a central result we give a short sketch of the proof. The interested reader should
turn to [45] for complete details.
From the Bernstein inequality (2.2.11) follows with a discrete Hardy inequality (see, for example, [45]),

‖v‖Hs .

 m∑
j=j0

22sj‖(Pj − Pj−1)v‖2L2

1/2

.

The lower estimate can only be shown to be of the form

‖v‖Hs &
1
νm

 m∑
j=j0

22sj‖(Pj − Pj−1)v‖2L2

1/2

,
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with a constant νm = νm(Sj , Pj) depending on properties of the space Sj and the projector Pj . Obviously,
we aim at ensuring νm = O(1) for m→∞. It is proved in [23] that under the assumptions of this theorem
from the projector property (2.1.46) automatically

‖Pj‖ = O(1), for all j ≥ j0,

follows. The Jackson Inequality (2.2.10) can be used to show an upper limit for νm,

νm . max { sup
0 6=g∈Sj

(
‖Pjg‖L2

‖g‖L2

+ 1) | j = 0, . . . ,m},

which can be bounded from above by the norm of the projector Pj , which is bounded by the above
remark. Thus, the existence of a lower bound for 1/νm for m→∞ follows.
The proof of the equivalence

∑
‖(Pj − Pj−1)v‖2Hs(Ω) ∼

∑
22sj‖(Pj − Pj−1)v‖2L2(Ω) can be found in [24].

Lastly, the equivalence to the wavelet expansion
∑

22sj‖〈v, Ψ̃j〉
T
‖2`2(∇j)

follows directly from the asser-
tions of Theorem 2.14.

Remark 2.18 In particular for s = 0, we regain the Riesz basis property (2.1.57) for H = L2.

Remark 2.19 By interchanging the roles of S and S̃, we obtain

‖v‖2Hs(Ω) ∼
∞∑
j=j0

22sj‖(P̃j − P̃j−1)v‖2L2(Ω), s ∈ (−σ, σ̃) .

Remark 2.20 Usually γ < d and γ̃ < d̃ holds, in which case σ = γ and σ̃ = γ̃ follows.

As stated in the above proof, the projectors P = Pj ,P̃j are uniformly bounded in Hs(Ω), i.e.,

‖Pv‖Hs(Ω) . ‖v‖Hs(Ω), for all v ∈ Hs(Ω),

for s up to σ, σ̃, respectively. Theorem 2.17 also implies that the unique wavelet expansions (2.1.53),
(2.1.54) in bases ΨII ,Ψ̃II for every v ∈ H+s, ṽ ∈ (H+s)′ satisfy the following norm equivalences

‖v‖H+s ∼ ‖D+sv‖`2(II), v = vTΨII = 〈v, Ψ̃II〉ΨII , (2.2.12)

‖ṽ‖H−s ∼ ‖D−sṽ‖`2(II), ṽ = ṽT Ψ̃II = 〈ṽ,ΨII〉Ψ̃II , (2.2.13)

with the diagonal matrices D±s = D±s
1 defined by(

D±s
1

)
λ,λ′

:= 2±|λ|sδ(λ,λ′) . (2.2.14)

Here we set for any indexes λ = (j, k), λ′ = (j′, k′) with |λ| = j

λ = λ′ :⇐⇒ j = j′ ∧ k = k′ .

Remark 2.21 Other diagonal matrices exist for which the norm equivalences hold. In the following
sections, the diagonal matrices D+s,D−s should be understood as a placeholder for any diagonal matrix
ensuring (2.2.12) and (2.2.13). The choice of the entries of the diagonal matrix is not important for
theoretical considerations, but we will see the impact of their precise form in numerical applications in
Section 5.

Corollary 2.22 For any diagonal matrix D+s,D−s satisfying (2.2.12),(2.2.13), the wavelet bases
Ψs := D−sΨII , Ψ̃s := D+sΨ̃II constitute Riesz bases for H+s, (H+s)′, respectively.

The diagonal scaling can be seen as a smoothing of the wavelet basis for positive Sobolev indices and a
roughening for negative indices. In the context of this thesis, an important consequence of norm equiva-
lences is their ability to prove that operators in properly scaled wavelet discretizations are asymptotically
optimally preconditioned.
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2.2.3 Operator Representation and Preconditioning

To this end, we will describe how the wavelet representation of an operator as a successive application of
linear operators is constructed. For later purposes, it will be convenient to derive this in a very general
setting. Let ΩA, ΩB be two open, bounded domains in IRn, not necessarily distinct, and let A be a linear
operator

A : Hs(ΩA)→ (Ht(ΩB))′, A : vA 7→ wB (2.2.15)

from the Sobolev space Hs(ΩA), s ≥ 0, into the dual of the Sobolev space Ht(ΩB), t ≥ 0. Let there be
biorthogonal wavelet bases in both spaces at our disposal, both satisfying the Riesz basis criterion with
diagonal matrices,

Ψs
A := D−s

A ΨII
A (primal) basis of Hs(ΩA),

Ψ̃s
A := D+s

A Ψ̃II
A (dual) basis of (Hs(ΩA))′,

and accordingly for Ht(ΩB) and (Ht(ΩB))′. Henceforth, all Sobolev norms are only taken for values
which the smoothness of primal and dual bases permit by Theorem 2.17. Now we can express vA and
wB in terms of these wavelet bases as

vA = vTΨs
A := 〈v, Ψ̃s

A〉Ψs
A, wB = wT Ψ̃t

B := 〈w,Ψt
B〉Ψ̃t

B ,

and therefore it follows
w = 〈Ψt

B , w〉 = 〈Ψt
B , Av〉 = 〈Ψt

B , AΨs
A〉v,

which can be seen as a discretized infinite-dimensional operator equation

Av = w, (2.2.16)

upon setting
A := 〈Ψt

B , AΨs
A〉 . (2.2.17)

This is called the standard representation of the operator A in wavelet coordinates. Equation (2.2.17)
can be reformulated as

A = 〈Ψt
B , AΨs

A〉 = D−t
B 〈Ψ

II
B , AΨII

A〉D−s
A = D−t

B TT
B〈ΦB , AΦA〉TAD−s

A (2.2.18)

using the wavelet transform to express the multiscale bases with respect to the corresponding single-
scale bases. It follows that the adjoint operator A′ : Ht(ΩB)→ (Hs(ΩA))′ defined by

〈A′w, v〉(Hs)′×Hs := 〈w,Av〉Ht×(Ht)′ , for all v ∈ Hs(ΩA), w ∈ Ht(ΩB), (2.2.19)

then has the representation

A′ = 〈Ψs
A, A

′Ψt
B〉 = 〈A′Ψt

B ,Ψ
s
A〉
T = 〈Ψt

B , AΨs
A〉
T = AT . (2.2.20)

Remark 2.23 In case A : Hs(ΩA)→ Ht(ΩB) with s, t ≥ 0, the construction process works accordingly.
The role of the primal and dual wavelet bases of Ht(ΩB) should be arranged such that the primal side is
associated with the positive Sobolev scale index and hence with a smoothing of the wavelet basis.

Preconditioning

Assuming A : Hs(ΩA)→ (Ht(ΩB))′ is an isomorphism, e.g.,

‖AvA‖(Ht)′ ∼ ‖vA‖Hs , for all vA ∈ Hs, (2.2.21)

we can prove the following

Theorem 2.24 The mapping A : `2(II)→ `2(II) is an isomorphism on `2(II),

‖Av‖`2(II) ∼ ‖v‖`2(II) ∼ ‖A
−1v‖`2(II), for all v ∈ `2(II), (2.2.22)

with bounded spectral condition number

κ2(A) := ‖A‖2‖A−1‖2 = O(1) . (2.2.23)
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Proof: Expanding vA = vTAΨs
A in the properly scaled wavelet basis, we have by the norm equivalences

(2.2.12), (2.2.13) and by assumption (2.2.21),

‖vA‖`2 ∼ ‖vTAΨs
A‖Hs

∼ ‖vTAAΨs
A‖(Ht)′

= ‖vTA〈AΨs
A,Ψ

t
B〉Ψ̃t

B‖(Ht)′

∼ ‖〈Ψt
B , AΨs

A〉vA‖`2
= ‖AvA‖`2 .

Since a completely analogous equivalence relation holds true for the inverse A−1, the second equivalence
in (2.2.22) follows. From this we can directly infer (2.2.23).

Thus, the multiplication by the diagonal matrices D−t
B , D−s

A has the capability of undoing the ef-
fect of A in the sense of the Sobolev scale. Hence, the diagonal matrices can be seen as preconditioning
of the discretized linear system.

2.2.4 Finite Discretizations

Let ΨII , Ψ̃II be two biorthogonal wavelet bases as in Section 2.1. We will denote all scaled wavelet bases
up to a certain level of resolution J by

Ψs
J := D−s

J ΨII
J = {(D−s)λ,λ ψλ |λ ∈ IIJ} ⊂ Hs, IIJ := {λ ∈ II | |λ| ≤ J}, (2.2.24)

where the finite diagonal scaling operator D−s
J is constructed from Ds by deleting all rows and columns

of indexes not in IIJ ,
D−s
J :=

((
D−s)

λ,λ′

)
λ∈IIJ ,λ′∈IIJ

∈ IR(#IIJ )×(#IIJ ) . (2.2.25)

The unscaled finite wavelet basis of levels up to J is now defined as

ΨII
J := {ψj,k ∈ ΨII | (j, k) ∈ IIJ} . (2.2.26)

Note that the wavelet space ΨII
J need not be the same as Ψ(J) in (2.1.28), for example in a tensor product

setting of Section 2.4. Since definition (2.2.26) extends (2.1.28), it will be used primarily.

Remark 2.25 This technique creates spaces which are linear, which makes them easy to handle in ap-
plications. Conversely, non-linear wavelet spaces can be constructed by best N-Term approximations.
The resulting adaptive techniques give rise to higher approximation orders for non-smooth functions
when compared to linear methods requiring the same storage amount in a computer system. We focus on
the linear case on uniform grids in this work, since this is the optimal case for smooth given data and
solutions. When dealing with singularities in the data or solution, enhancements can be achieved using
adaptive methods. An introduction to non-linear approximations can be found in [35].

We can directly conclude from (2.2.10) the value of the discretization error (1.3.28) with respect to
Ψs
J as hj = 2−sj .

Best Approximations

An important question in the current setting is to find the best approximation y∗ := y∗J of an
element y ∈ Hs in the subspace S(ΨII

J ) ⊆ S(ΨII), or to give error bounds for ‖y − y∗‖Hs for any valid
value of s. The best approximation y∗ of y is defined as the element for which (1.3.28) is minimized, i.e.,

‖y − y∗‖Hs = inf
v∈S(ΨII

J )
‖y − v‖Hs . (2.2.27)

The natural candidate for y∗ is obviously the orthogonal projection onto the space ΨII
J by means of the

projectors PJ of (2.1.44). We can use these projectors to prove error bounds for (2.2.27) given in the
following
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Theorem 2.26 For y ∈ Hs, 0 < s ≤ d, and r ≤ s one has

inf
v∈S(ΨII

J )
‖y − v‖Hr . 2−(s−r)J‖y‖Hs .

Proof: We expand y in a telescopic sum

y =
∞∑
l=j0

(P` − P`−1) y, (2.2.28)

recalling Pj0−1 = 0 and the projector property PJPj = PJ , j ≥ J . By Theorem 2.17, we have

inf
v∈S(ΨII

J )
‖y − v‖2Hr ≤ ‖y − PJy‖2Hr

= ‖
∞∑

`=J+1

(P` − P`−1) y‖2Hr

=
∞∑

`=J+1

2+2r`‖ (P` − P`−1) y‖2L2

=
∞∑

`=J+1

2−2(s−r)`2+2s`‖ (P` − P`−1) y‖2L2

. 2−2(s−r)J‖y‖2Hs ,

where we used the geometric series formula in the last step. The norm equivalence is still valid because
only a finite number of coefficients were omitted in the sum, although the constants involved are probably
higher. Assertion (2.2.28) now follows after taking the square root on both sides.

The above result reads for r = 0:

inf
v∈S(ΨII

J )
‖y − v‖L2 . 2−sJ‖y‖Hs . (2.2.29)

This means that the convergence speed of the approximation by wavelet spaces (as J → ∞) is directly
linked to the smoothness s > 0 of the function to be approximated.

2.2.5 Stability of the Discretizations

Since we now have optimally conditioned infinite dimensional wavelet-discretized operators at our dis-
posal, we only need to ensure stability when truncating all multiscale bases Ψj above a certain level
j > J . Then we have uniformly stable finite dimensional operators which are easy to set up by means
of the single-scale basis and the fast wavelet transform and yet carry all the advantages induced by
the attributes (S)(2.1.5), (R)(2.1.6), (L)(2.1.8) and (B)(2.1.52). There are two types of criteria relevant
for our control problems which ensure stability of the finite discretized systems, both of which we specify
now.

Galerkin Stability

We fix a refinement level J at which we wish to find the solution yJ ∈ SJ of an elliptic differen-
tial operator A : H+t → (H+t)′ in a Galerkin scheme (see Section 1.3.3),

〈Ψt
J , AyJ〉 = 〈Ψt

J , f〉, (2.2.30)

with respect to the wavelet basis Ψs
J ⊂ ΨII ⊂ H with the finite index set IIJ ⊂ II.

Definition 2.27 [Galerkin Stability]
The Galerkin Scheme (2.2.30) is called (t,-t)-stable, or Galerkin stable, if

‖PJv‖Ht ∼ ‖P̃JAPJv‖(Ht)′ , v ∈ SJ , (2.2.31)

holds uniformly in J, with the projectors of (2.1.44) and (2.1.45).
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Expanding yJ = yTJΨt
J = yTJD−t

J ΨII
J and f = 〈f,Ψt

J〉Ψ̃t
J = fTJ Ψ̃t

J = fTJ D+t
J Ψ̃II

J in (2.2.30), we obtain

AJ := 〈Ψt
J , AΨt

J〉 = D−t
J 〈Ψ

II
J , AΨII

J 〉D−t
J , (2.2.32)

and analogously to (2.2.16) we can write (2.2.30) as a finite-dimensional discretized operator equation

AJyJ = fJ . (2.2.33)

Galerkin stability now ensures the stability of our discretized operator.

Proposition 2.28 If the Galerkin scheme is (t, -t)-stable and it holds

|t| < γ, γ̃,

then the matrices
AJ = D−t

J 〈Ψ
II
J , AΨII

J 〉D−t
J (2.2.34)

have uniformly bounded condition numbers.

Proof: The result follows from applying the norm equivalences (2.2.12),(2.2.13) combined with (2.2.30)
and is altogether very similar to the proof of Theorem 2.24:
For PJv = vTJΨII

J ∈ H+t, equivalence (2.2.31) can be written as

‖(AJvJ)T Ψ̃II
J ‖(Ht)′ ∼ ‖vTJΨII

J ‖Ht .

Together with (2.2.12),(2.2.13) this yields

‖vJ‖`2(IIJ ) ∼ ‖vTJD−t
J ΨII

J ‖Ht

∼ ‖(〈ΨII
J , AΨII

J 〉D−t
J vJ)T Ψ̃II

J ‖(Ht)′

∼ ‖(D−t
J 〈Ψ

II
J , AΨII

J 〉D−t
J )vJ‖`2(IIJ )

= ‖AJvJ‖`2(IIJ ),

and in perfect analogy
‖vJ‖`2(IIJ ) ∼ ‖A−1

J vJ‖`2(IIJ ) .

Thus, by definition, we arrive at κ2(AJ) = O(1).

In other words, Galerkin stability entails that AJ is still an isomorphism on `2(IIJ) uniformly
in J .

Remark 2.29 Galerkin stability is trivially satisfied if the operator A is given by 〈y,Av〉 = a(y, v) as in
Definition 1.34 since then a(v, v) ∼ ‖v‖2Ht holds. The operator AJ is then called stiffness matrix.

The LBB-Condition

Galerkin stability is sufficient for the homogeneous version of the elliptic PDE (1.3.7). Later, ad-
ditional stability conditions will be required during the discretization of elliptic boundary value problems
as saddle point problems. These will be given by the Ladysens̆kaya-Babus̆ka-Brezzi (LBB)-Condition.
We will introduce and discuss the LBB-Condition in Section 3.

2.2.6 Riesz Stability Properties

As we will see in Section 5, theoretical equivalence relations have substantial impact on the computed
solutions in applications. The computational problem arises from the constants inherent in every norm
equivalence which we up to now gracefully ignored with our convenient short writing symbols like ”∼”.
To get a quantitative measurement of the condition of a Riesz basis, we must establish lower and upper
bounds for the equivalence relation (S)(2.1.5). To this end, we define the Riesz bounds for a Riesz
basis Φ ⊂ H,

cΦ := sup {c | c‖v‖`2 ≤ ‖vTΦ‖H},
CΦ := inf {C |C‖v‖`2 ≥ ‖vTΦ‖H},
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with which we can rewrite (S)(2.1.5) to

cΦ‖v‖`2 ≤ ‖vTΦ‖H ≤ CΦ‖v‖`2 , for all v ∈ `2 . (2.2.35)

If λmin(Φj ,Φj) resp. λmax(Φj ,Φj) denote the smallest resp. largest eigenvalue of the Gramian matrix
(Φj ,Φj) := (Φj ,Φj)H, it is known (see [42]) that

cΦj
=
√
λmin(Φj ,Φj) ∼ 1, CΦj

=
√
λmax(Φj ,Φj) ∼ 1 . (2.2.36)

If the basis condition

κΦj :=
(
CΦj

cΦj

)2

(2.2.37)

is a large constat, Φj is said to be poorly conditioned. Unfortunately, the Gramian matrix is not
explicitly computable when H = Hs for arbitrary values of s, and so the quality of the basis cannot
be judged accurately. To improve the constants involved in (2.2.35) when evaluating the norm of any
element v ∈ H, we take on a different approach from [12] which builds on the Riesz Representation
Theorem using Riesz operators.

2.2.7 Riesz Operators for Hs

We describe this for the general case H = H+s,H′ = (H+s)′ with wavelet bases Ψs, Ψ̃s.
We are now interested in constructing Riesz maps RH : H → H′ defined by

〈RHv, w〉 := (v, w)H, for all v, w ∈ H . (2.2.38)

The Riesz Representation Theorem establishes for Riesz maps 〈RHv, v〉H′×H ∼ ‖RHv‖H′‖v‖H, from
which it follows that Riesz operators are generally spectral equivalent to the identity, i.e.,

‖RH‖L(H;H′) ∼ 1 . (2.2.39)

Observe that for any v = vTΨs ∈ Hs one has

‖v‖2Hs =
(
vTΨs,vTΨs

)
Hs = vT (Ψs,Ψs)Hsv = vTMHsv, (2.2.40)

where
(
ΨII ,ΨII

)
Hs = MHs is the Gramian matrix with respect to the Hs-inner product. Since

‖M1/2
Hs v‖2`2 = vTMHsv ≡ ‖R1/2

Hs v‖2`2 ,

we conclude that the exact discretization of the Riesz map RHs would be RHs = MHs .

Remark 2.30 (i) Recall that the exact Gramian matrix MHs is inaccessible for s /∈ ZZ.

(ii) Note that RH is symmetric positive definite for any space H and, thus, R1/2
H is always well defined.

For s ∈ ZZ, we can represent RH exactly. For example, in the cases s ∈ {0, 1}, it follows with the
definitions of the L2-product (1.2.1) and the H1-product (1.2.3) that we have

RL2 := ML2 and RH1 := D−1(SH1 + ML2)D
−1, (2.2.41)

where SH1 is the Laplace matrix and ML2 the mass matrix, for further details see [11]. With these
matrices the norm equivalences ‖v‖L2 ∼ ‖v‖`2 and ‖w‖H1 ∼ ‖w‖`2 can be obtained with constants equal
to 1 and not of order O(1).
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Riesz Operators based on Scaling

Because we will have to deal with fractional Sobolev spaces in Section 4, we use another construc-
tion based on diagonal scaling. Since the Sobolev spaces are nested as in (1.2.8), there is an inclusion
operator ι : Hs → (Hs)′. In wavelet coordinates, this change of bases is merely a diagonal scaling when
the wavelet base of the target space is the same as that of the initial space. This is not the case here,
but the construction can nevertheless be carried out as follows.
By Theorem 2.17 can we interpret D̂+s := D+s

1 as a shifting operator in the Sobolev scale, i.e.,

D̂+s : Ht+s → Ht, (D̂+s)(j,j′)(k,k′) = 2+jsδ(j,j′)δ(k,k′), (2.2.42)

so that
R̂Hs := D̂+2s : Hs → (Hs)′ (2.2.43)

can be used to shift elements of H into H′. Using the formulation of Section 2.2.3, the standard wavelet
representation R̂Hs of R̂Hs is given by

R̂Hs =
〈
Ψs, R̂HsΨs

〉
Hs×(Hs)′

= D−s
〈
ΨII , R̂HsΨII

〉
Hs×(Hs)′

D−s

= D−s
〈
ΨII , D̂+sD̂+sΨII

〉
Hs×(Hs)′

D−s

= D−sD̂+s
(
ΨII ,ΨII

)
L2

D̂+sD−s . (2.2.44)

Remark 2.31 Note that the Riesz operator scaling D̂+s and the diagonal scaling D−s could cancel each
other out by the use of D−s = D−s

1 . However, this does not occur if we choose D−s differently, e.g., see
Remark 3.19.

Remark 2.32 The choice D̂+s = D+s
1 is not without reason. By changing D̂, we change the way we

weight functions in the norm equivalences. Although any matrix satisfying the norm equivalence could
potentially be used as D̂, the actual choice has an impact on the quality of numerical experiments, see
Section 5.2.3.

The inverse operator R̂−1
Hs : H−s → H+s is trivially given by D̂−2s and can be represented as the inverse

of (2.2.44),

R̂−1
Hs = D+sD̂−s(ΨII ,ΨII

)−1

L2
D̂−sD+s

= D+sD̂−s
(
Ψ̃II , Ψ̃II

)
L2

D̂−sD+s, (2.2.45)

where we used identity (2.1.60) in the last step. The case s = 0 thus again becomes

R̂L2 = ML2 =
(
ΨII ,ΨII

)
L2

,

R̂−1
L2

= M̃L2 =
(
Ψ̃II , Ψ̃II

)
L2

.
(2.2.46)

Numerical tests, see Section 5.2.3, show that using R̂Hs gives better results than using no Riesz operator
at all. This observation can be justified by the following deliberation: Fix c0, C0 < ∞ as the Riesz
bounds of (2.2.35) for H = L2. Then it follows

κL2 :=
(
C0

c0

)2

=
λmax(ML2)
λmin(ML2)

= κ2(ML2) ∼ 1, (2.2.47)

and for H = Hs with constants cs, Cs <∞

κHs :=
(
Cs
cs

)2

=
λmax(MHs)
λmin(MHs)

= κ2(MHs) ∼ 1 . (2.2.48)
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These can easily be combined to give error bounds for the Hs-norm with respect to the `2-norm of
‖M1/2

L2
v‖`2 , which is not equal to ‖v‖L2 , since the coefficient vector v is scaled by D+s. It holds

cs
C0
‖M1/2

L2
v‖`2 ≤ ‖M

1/2
Hs v‖`2 ≤

Cs
c0
‖M1/2

L2
v‖`2 . (2.2.49)

These estimates are not sharp, e.g., for s = 0 we should have equality but only obtain equivalence up to
the value of κL2 , and we witness better results in practice than can be predicted here.

Lemma 2.33 We have for every v = vTΨs = 〈v, Ψ̃s〉Ψs ∈ Hs the following chain of equivalences:

‖v‖Hs = ‖R1/2
Hs v‖`2 ∼ ‖R̂

1/2
Hs v‖`2 ∼ ‖R

1/2
L2

v‖`2 ∼ ‖v‖`2 , s ∈ (−σ̃, σ) . (2.2.50)

In other words, every one of the operators RHs , R̂Hs ,RL2 and I can be used as a Riesz operator for Hs.

Riesz Operators based on Interpolation

The construction of the Riesz operator outlined here was introduced in [11]. We only quote the
results and refer to that work for details.
Since the exact Riesz operator for L2 and H1 are known, these can be used to construct new Riesz
operators by interpolating linearly between them.

Theorem 2.34 For s ∈ [0, 1], the norm defined by

v = vTΨ ∈ Hs, ‖v‖2s := (1− s)vTD+sRL2D
+sv + svTD+sRH1D+sv, (2.2.51)

or alternatively written in the scaled wavelet basis as

v = vTΨs ∈ Hs, ‖v‖2s = vT
(
(1− s)ML2 + sD−1(SH1 + ML2)D

−1
)
v, (2.2.52)

is equal to the standard Sobolev norms for s ∈ {0, 1} and equivalent for s ∈ (0, 1). It can be computed in
linear time.

In the following, we denote this Riesz operator as

R̃Hs := (1− s)RL2 + sRH1 , 0 ≤ s ≤ 1 . (2.2.53)

Just as the summands, the Riesz operator R̃Hs is spectrally equivalent to the identity matrix and thus
uniformly well-conditioned.

Remark 2.35 This construction can be extended for all s ∈ IR with exact interpolation for all integer
s ∈ ZZ, see [11].

These Riesz operators will be used in Section 4 to improve the constants in the above norm equivalences.
This will somewhat improve the discrepancy between the original analytical problem formulation and the
discretized wavelet formulation.
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2.3 Wavelets on the Interval

In the preceding sections we described general properties of wavelet spaces. This theoretical work will
now be applied to a practical construction of B-spline based (primal) wavelets. The construction process
presented here was first proposed in [19]. Actual implementation results can be found in [30].
The objective is the construction of wavelets adapted to the interval I = (0, 1) endowed with the following
properties:

(S)(2.1.5) The wavelets form a Riesz-Basis for L2(I), and norm equivalences with respect to Sobolev
spaces Hs(I) for a certain range of the smoothness parameter s hold.

(R)(2.1.6) The wavelets are refinable with masks of uniformly bounded length.

(L)(2.1.8) All generators and wavelets on the primal and dual side have compact support.

(B)(2.1.52) The primal and dual wavelets form a biorthogonal pair.

(P)(2.2.3) The primal MRA consists of spline spaces of order up to d − 1, and thus has polynomial
exactness of order d.

(P̃)(2.2.4) The dual MRA has polynomial exactness of order d̃− 1.

(V)(2.2.5) As a consequence of (P̃), the wavelets have d̃ vanishing moments.

The constants d and d̃ are preassigned such that they satisfy (2.2.8) before the construction process.

2.3.1 The Construction

We outline the construction process for B-splines with general order such that the structure of the
construction becomes more apparent. There are several parameters which can be chosen arbitrarily
during the construction process. Later we will investigate the impact of these parameters, in particular,
in Lemma 2.41, in applications. Full details about the construction process can be found in [30].
Later we will employ a modified construction with orders d = 2, d̃ = 4 in Section 5 which is sufficient for
the control problems treated in this thesis.

B-Spline Wavelets

We begin the construction by setting up a Riesz basis for L2(IR), which is then restricted to the
interval (0, 1). Let φd(x) be the cardinal B-spline of order d ∈ IN (see Appendix B for the definition).
These B-splines are symmetric and centered around µ(d) := d mod 2. We will use these B-splines as
primal generators, since they are easy to set up, have finite support,

suppφd = [`1, `2], `1 := −bd
2
c, `2 := dd

2
e, (2.3.1)

and are known to be refinable with mask ad = {adk} ∈ `2,

adk := 21−d
(

d
k + bd2c

)
, k = `1, . . . , `2 . (2.3.2)

These generators also offer the advantage of being scaled correctly in the sense of the Riesz basis property
in Definition 2.1. The question whether a refinable dual basis exists for any d ∈ IN has been proved
in [19] and we cite this result from [30].

Theorem 2.36 For each d and any d̃ ≥ d with d + d̃ even, there exists a function φd,d̃ ∈ L2(IR) such
that

(i) φd,d̃ has compact support, e.g.

suppφd,d̃ = [ ˜̀1, ˜̀
2], ˜̀

1 := `1 − d̃+ 1, ˜̀
2 := `2 + d̃− 1
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2.3. Wavelets on the Interval

(ii) φd,d̃ is also centered around µ(d).

(iii) φd,d̃ is refinable with finitely supported mask ãd = {ãdk}
˜̀2
k= ˜̀1

.

(iv) φd,d̃ is exact of order d̃.

(v) φd and φd,d̃ form a dual pair, i.e.,(
φd, φd,d̃(· − k)

)
L2(IR)

= δ(0,k), k ∈ ZZ .

(vi) The regularity of φd,d̃ increases proportionally with d̃.

Thus, for d,d̃ fixed, we write φ := φd, φ̃ := φd,d̃ and define the generator bases Φj = {φj,k}, Φ̃j = {φ̃j,k}
according to (2.1.9). We also deduce that S := {S(Φj), j ≥ j0} is a multiresolution analysis of L2.
The primal mother wavelet can now be constructed from the primal basis functions and the dual mask
ã as (see [19])

ψ(x) :=
∑
k∈ZZ

bkφ(2x− k), bk := (−1)kãd1−k . (2.3.3)

The primal wavelets are then derived as depicted in (2.1.14). Thus, the elements of the refinement
relation (2.1.16) are given by the bk above. The dual wavelets are defined accordingly.

Corollary 2.37 The bases {Φj0 ∪
⋃
j≥j0 Ψj}, {Φ̃j0 ∪

⋃
j≥j0 Ψ̃j} are indeed biorthogonal wavelet bases

in the multiresolution framework of Section 2.1.

Adaptation to the Interval

With proper generators and wavelets at our disposal, we can not simply restrict the collections
Φj , Φ̃j to the interval (0, 1) in the hope of constructing adapted wavelets, as this would violate biorthog-
onality. Ruling out any φj,k, φ̃j,k whose support is not fully contained in (0, 1) would lead to primal and
dual bases of different cardinality and thus also break biorthogonality. In addition, the approximation
property (2.2.10) would not longer hold near the ends of the interval. Last but not least, we also need
to take boundary conditions into account.
The actual adaptation is done in three steps. First, we take out every function whose support is not
fully contained within (0, 1). Then we insert new basis functions at the boundaries to compensate for
the reduction. These shall incorporate the boundary conditions and have properties (V) and (Ṽ), thus
preserving the vanishing moments and polynomial reproduction orders d, d̃ for the new basis.
Lastly, the new basis functions are again biorthogonalized by a local basis transformation regarding only
functions near the boundary.
Fixing a parameter ` ≥ −`1, let Φ0

j be the family of basis functions inside I = (0, 1) with distance
2−j |`− (−`1)| from the edges, i.e.,

Φ0
j := {φj,k ∈ Φj | suppφj,k ⊆ 2−j [|`+ `1|, 1− 2−j |`+ `1|] ⊆ (0, 1)} . (2.3.4)

We infer that the cardinality of this set is 2j − 2 `− µ(d) and associate it with the index set

∆0
j := {`, . . . , 2j − `− µ(d)} . (2.3.5)

The new set of functions at the left boundary with its index set is designated as

ΦLj := {φLj,k | k ∈ ∆L
j }, ∆L

j := {`− d, . . . , `− 1}, (2.3.6)

where each element φLj,k is given by (see [30]),

φLj,`−d+r :=
`−1∑

m=−`2+1

(
(·)r, φ̃(· −m)

)
L2(IR)

φj,m

∣∣∣∣
(0,1)

, r = 0, . . . , d− 1, (2.3.7)

thus incorporating the space Πd into span {φLj,k} while preserving the regularity order γ in the new
function set φLj,k.
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Section 2. Wavelets and Multiresolution Analysis

Remark 2.38 Homogeneous boundary conditions on either side can be achieved by demanding only r =
1, . . . , d− 1, i.e., deleting the monomials of order 0 from the appropriate index sets. Equal cardinality on
the primal and dual side can always be achieved by a suitable modification of ` and ˜̀.

The functions (2.3.7) are known to be refinable with a finite mask, see [30], a fact which we save to prove
in full detail here. By permutation and renumbering, we can employ these refinement coefficients and
functions at the right hand border of (0, 1),

ΦRj := {φRj,k | k ∈ ∆R
j }, ∆R

j := {2j − `− µ(d) + 1, . . . , 2j − `− µ(d) + d}, (2.3.8)

with
φRj,2j−`−µ(d)−d−r(1− x) := φLj,`−d+r(x), r = 0, . . . , d− 1, (2.3.9)

thus achieving symmetry. The next result is also taken from [30].

Proposition 2.39 By defining the family of functions

Φ′j := ΦLj ∪ Φ0
j ∪ ΦRj , ∆j := ∆L

j ∪∆0
j ∪∆R

j , (2.3.10)

the spaces Sj := S(Φ′j), j ≥ j0, are nested and exact of order d, i.e.,

Sj ⊂ Sj+1, Πd((0, 1)) ⊂ Sj, j ≥ j0 . (2.3.11)

Moreover, the same regularity order γ is maintained as from Ω = IR.

This construction can be carried to the dual side accordingly with parameter ˜̀ ≥ −˜̀
1, and Proposi-

tion 2.39 holds true for Φ̃′j and ∆̃′
j defined analogously. The number of boundary functions to add on

the primal side is always d and d̃ and the dual side, although d̃ ≥ d and Πd̃ ⊂ Φ̃′j needs to be achieved
on the dual side. Hence, the cardinality of both index sets ∆j , ∆̃j can be made equal by choosing

˜̀= `+ (d̃− d),

for the dual side. This is necessary since equal cardinality is a prerequisite of biorthogonality.
To reestablish biorthogonality, a local basis transformation is applied on the left and right boundaries.
To this end, we enlarge the primal index set ∆X

j , X ∈ {L,R}, by the next d̃ − d ≥ 0 adjacent functions
of Φ0

j and get
#∆X

j = #∆̃X
j , X ∈ {L,R} . (2.3.12)

We can now define the square matrices

ΓLj :=
((

φLj,k, φ̃
L
j,k′

)
(0,1)

)
k,k′∈∆L

j

, ΓRj :=
((

φRj,k, φ̃
R
j,k′

)
(0,1)

)
k,k′∈∆R

j

. (2.3.13)

The next theorem was proved in [30].

Theorem 2.40 The matrices ΓLj ,Γ
R
j are nonsingular, symmetric and independent of j, i.e.,

Γ := ΓL = ΓLj , Γl = ΓR = ΓRj ,

where (Cl)i,j := (C)n−i,n−j for n× n-matrices.

By defining the bases

Φj := Φ′j , Φ̃j := Γ−Tj Φ̃′j :=

 ΓL

I#e∆0
j

ΓR

−T

Φ̃′j (2.3.14)

we achieve (B) biorthogonal, (S) uniformly stable and (L) local single-scale bases with the desired (V),
(Ṽ) vanishing moment conditions. Moreover, these bases are (R) refinable with matrices

Mj,0 := M′
j,0, M̃j,0 := Γj+1 M̃′

j,0 Γ−1
j , (2.3.15)

where M′
j,0, M̃′

j,0 are the refinement matrices of the bases Φ′j and Φ̃′j .
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Stable Completions

All which remains to be done is to construct a stable completion suitable for our needs. We
will first outline the construction of an initial stable completion, and then apply Theorem 2.14, thereby
finishing the construction process.
We assume d to be even, because this is the case that we will be using in Section 2.3.2. For odd d a
similar reasoning can be used with some obvious modifications. We can thus infer µ(d) ≡ 0 from the
previous section.
To begin, we first establish the block matrix view of the refinement matrix Mj,0,

Mj,0 =

ML

Zj

MR

(2.3.16)

where the inner block Zj should contain the repeated columns of the mask vector a of (2.3.2). The border
blocks ML and MR are independent of j and contain the refinement relations for the new boundary
functions ΦLj and ΦRj . The boundary symmetry (2.3.9) inherited in the construction process assures

ML = Ml
R. We have Zj ∈ IRp(j)×q(j) with

p(j) := 2j − 2 `+ 1,
q(j) := 2j+1 − 4 `+ d+ 1 .

We can perform Gaussian elimination with some matrices H(i)
j ∈ IRq(j)×q(j) on Z(0)

j := Z, which is
possible without pivoting because of the B-spline construction. After d steps, we have

(Z(d)
j )m,k = b δ(m−2k,0),

in other words, the matrix contains only one constant non-zero entry per column. Introducing the two
new matrices

Uj := b−2
(
Z(d)
j

)T
, (Fj)m,k := δ(m−2k,−1),

and we can conclude
UjZ

(d)
j = Ip(j), UjFj = 0 .

These matrices Z(i)
j ,UT

j ,Fj are then embedded into matrices

Z(i)
j → Ẑ(i)

j , UT
j → ÛT

j , Fj → F̂j , (2.3.17)

according to the following scheme:

Ẑ(i)
j

ÛT
j

}
:=

Id

Id

{
Z(i)
j

UT
j

F̂j := Fj

I`

I`+µ(d)−1

(2.3.18)
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The matrices Ẑ(i)
j and ÛT

j have the dimensions #∆j+1 ×#∆j , F̂j is of size #∆j+1 ×#∇j . We embed

each H(i)
j into a square #∆j+1 ×#∆j+1-matrix Ĥ(i)

j in the same manner (see (2.3.21) below) and can
thus write

Ẑ(0)
j = Ĥ−1

j Ẑ(d)
j , Ĥj := Ĥ(d)

j · · · Ĥ
(1)
j , (2.3.19)

With these definitions, the following is an extension of a result from [30] proposed in [11]:

Lemma 2.41 For any r 6= 0, it holds that(
Ûj

r−1F̂Tj

)
(Ẑ(d)

j , rF̂j) =
(

I#∆j 0
0 I#∇j

)
= I#∆j+1 .

Lastly, there exists a square matrix P̂j ∈ IR(#∆j+1)×(#∆j+1) such that

Mj,0 = P̂jẐ
(0)
j , (2.3.20)

and the layout of P̂j can be seen below:

Ĥ(i)
j := Hj

I`+`2

I`+`2

P̂j :=

MR

I#∆j+1−2d

ML

(2.3.21)

As the final result, the initial stable completion is given by

M̌j = (Mj,0, M̌j,1) = P̂jĤ−1
j (Z(d)

j , rF̂j), (2.3.22)

with its inverse

Ǧj =
(

Ǧj,0

Ǧj,1

)
=
(

Ûj

r−1F̂Tj

)
ĤjP̂−1

j . (2.3.23)

We can now apply Theorem 2.14 with the matrices Mj,0, M̃j,0 of (2.3.15) and M̌j,1 of (2.3.22) and thus
the construction of biorthogonal wavelet bases Ψ, Ψ̃ on the interval I = (0, 1) is complete.

2.3.2 The Case d = 2, d̃ = 4, j0 = 3

We will not specialize the entire construction process of Section 2.3.1. Rather we show the resulting
bases and wavelets and their refinement matrices. These results were first established in [30] and further
investigated in [11]. The original refinement matrices can also be downloaded from the web at [29].
A construction using only rational numbers which avoids further rounding errors has been carried out
in [11].
By choosing d = 2, a primal function consists of piecewise constant and linear polynomials. The minimum
level in this case is j0 = 3, and we have

#∆j = 2j + 1, #∇j = 2j . (2.3.24)

Let the characteristic function and the hat function be given as

χj,k(x) :=
{

1 2jx ∈ [k, k + 1]
0 otherwise , ϕj,k(x) :=

 2jx− (k − 1) 2jx ∈ [k − 1, k)
−2jx+ (k + 1) 2jx ∈ [k, k + 1]
0 otherwise

,
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and the primal generators on level j ≥ j0 are given by

φj,k = 2j/2


χj,k + ϕ−j,k+1 k = 0
ϕj,k k = 1, . . . , 2j − 1
ϕ+
j,k−2 + χj,k−1 k = 2j

, (2.3.25)

where ϕ+
j,k is the first part of the hat function (with positive slope) and ϕ−j,k the second part (with negative

slope). The hat function is known to be refinable with mask

{ 1
2
√

2
,

1√
2
,

1
2
√

2
}, (2.3.26)

and it is easy to verify that the boundary generators are refinable with mask

{ 1√
2
, 0,

1√
2
,

1
2
√

2
} . (2.3.27)

The general structure of the refinement matrix Mj0,0 can be seen in Figure 2.2. Higher level matrices
Mj,0, j > j0, are formed by inserting empty rows and columns in the middle of Mj0,0 and repeating the
mask (2.3.26) in every column, offsetting by two on every turn. The sparsity of Mj,0 is thus obvious: we
have at most three non-zero values per column.
The wavelets are specified by the refinement matrix Mj,1 which still has an open degree of freedom in its
construction: the parameter r from Lemma 2.41 can be chosen arbitrarily. Although this parameter does
not affect plots of the wavelets, it does affect computations by having an impact on the absolute value
of the condition numbers of the finite discretized systems. There are two values of r that have proved to
be of value in applications and we will denote them by

rDKU := 1 , rB :=
√

2 . (2.3.28)

Setting r = rDKU leads to the refinement matrices of [29] and setting r = rB is the construction from [11].
The wavelet refinement matrix Mj0,1 can be seen in Figure 2.3. The matrices Mj,1 are also constructed
in a repetitive manner by repeating and offsetting any of the third to sixth row. The bandwidth is now
9 ≈ 2d̃, which is a direct consequence of (2.3.3) combined with (2.36(i),(iii)).
The dual wavelets and generators can only be plotted approximately, since they are not known explicitly.
Recall that only their existence is assured by Theorem 2.36 which suffices for our purpose. However, by
(2.1.58) and (2.1.60), we can project the space S(Ψ̃j) onto the space S(Φj+1), thus approximating the
dual wavelets with piecewise linear functions. Obviously this method is inexact, but choosing j � j0 and
then plotting only dual functions on level j = j0 will lead to a sufficiently accurate visualization. These
pictures can be found in Figure 2.4 to Figure 2.6.
It is well known (see [32]), that piecewise linear and globally continuous wavelets are contained in the
Sobolev space Hs up to s < 3/2, or, by Definition 2.16 we have γ = 3/2.
It was pointed out in [19] that in our case of d = 2, d̃ = 4, the dual generators decay in the following
fashion:

|φ̃(x)| ≤ C(1 + |x|)−α, α > 1.2777 .

With Definition 1.10 this directly translates to γ̃ > 1.2777. Note that the case d = 2, d̃ = 2 would
only yield γ̃ > 0.6584 (see [19]), which would not suffice for the applications considered in this thesis.
Hence, our wavelets satisfy the norm equivalences of Theorem 2.17 for the range from (H1(I))′ to H1(I).
Thus, we are in a position to apply the standard wavelet representation of Section 2.2.3 to any elliptic
differential operator A : H1(I)→ (H1(I))′ of order 2.

Remark 2.42 The above outlined construction is one possible method for the construction of boundary
adapted spline based wavelets. Another approach is given by splines with coinciding nodes at the boundary.
Such a construction was first proposed in [16] and further optimized by Miriam Primbs. In the experiments
conducted later, we will also use the mask coefficients from [56] for comparison.
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Figure 2.2: On the left, we show the 1st, 4th and 9th primal generators on level j0 = 3 and on the right,
a density plot of the refinement matrix MT

j0,0
. Brighter boxes indicate entries of smaller absolute value,

white boxes represent 0. The first generator φj0,0 is drawn red, φj0,3 green and φj0,8 blue. The entries of
MT

j0,0
belonging to these three generators are the 1st, 4th and 9th row, respectively.
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Figure 2.3: On the left, we show the 1st, 4th and 7th primal wavelet on level j0 = 3 for rB =
√

2 in
colors red, green and blue, respectively. Only four wavelets, the 3rd to 6th wavelet, on this level are
left untouched by the homogeneous boundary conditions. On the right, the refinement matrix MT

j0,1
is

plotted. The 1st, 4th and 7th row of MT
j0,1

contains the masks of these wavelets.
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Figure 2.4: Three boundary adapted dual generators, number 1, 4 and 8, on level j0 = 3, projected onto
S(Φ10). This means every function is approximated by piecewise linear functions of support ≈ 2−10. On
the right, we show the matrix Gj0,0. The refinement coefficients for these generators are given in the
first, fourth and eighth row, respectively.
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Figure 2.5: The last boundary adapted dual generator, number 3, and the only generator unchanged
by the boundary conditions, approximated with S(Φ10). It is this generator’s mask that is used in the
repetitive structure of the matrices Gj,0. The corresponding rows in the matrix Gj0,0 on the right are
rows number 3 and 5.
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Figure 2.6: Here we show the dual wavelets on level j0 = 3 projected onto S(Φ10). Since d = 2, we see a
small mask length and small boundary blocks in Gj,1 on the right. The wavelets incorporate the scaling
of r = rB .
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2.3.3 Basis Transformations

Numerical studies show that condition numbers of operators obtained using wavelet discretizations are
indeed uniformly bounded, if preconditioned correctly. The involved constants can nevertheless be quite
high, and condition numbers of magnitude 102 − 103 are seen often. We now show some approaches to
improve the wavelet bases to achieve lower absolute values of condition numbers and thus faster program
executions in applications.

Reducing Boundary Effects

The single scale basis (2.3.25) generally exhibits worse stability constants than the basis without
the boundary adapted generator. This means that the absolute values of the condition numbers of
differential operators in wavelet discretization of Section 2.3.2 are usually higher than those using free
boundaries on the interval. A common approach to remedy the situation is the application of a basis
transform, i.e.,

Φ′j := CjΦj , (2.3.29)

which acts local in the sense that Cj only affects the boundary blocks, i.e.,

Cj :=

 C
I#∆j−2m

Cl

 ∈ IR(#∆j)×(#∆j), (2.3.30)

and the matrix C ∈ IRm×m is independent of j. Recall (Cl)m−i,m−j := (C)i,j . Obviously, the modified
single-scale basis implies new refinement matrices M′

j,0,M
′
j,1:

M′
j,0 = C−T

j+1Mj,0CT
j , (2.3.31)

M′
j,1 = C−T

j+1Mj,1 . (2.3.32)

The altered multiscale transformation T′
J can easily be shown to be of the form

T′
J = C−T

J TJ

(
CT
j0

I#(∆J\∆j0 )

)
. (2.3.33)

Let L : H → H′ be any operator with bases ΦJ and Ψ(J) in H, e.g., L is the differential operator from
Section 1.3.2. The discretized operator L in standard form (2.2.17) with respect to the wavelet basis
Ψ′

(J) = T′
J
TΦ′J has the representation

LΨ′(J)
=
(

Cj0

I#(∆J\∆j0 )

)
LΨ(J)

(
CT
j0

I#(∆J\∆j0 )

)
, (2.3.34)

thus, the new operator is obtained from the standard operator matrix by the application of the transfor-
mation Cj0 on the coarsest level.
A suitable choice for the setup of Cj0 can be constructed as follows: We take an upper block(

LΨ(j0)

)
i,j=1,...,m

∈ IRm×m,

with m ≤ b#∆j0/2c, thereby not changing all of the basis function of the generator basis. We compute
the singular value decomposition of this block, i.e.,

(
LΨ(j0)

)
i,j=1,...,m

= USUT := U


s1

s2
. . .

sm

UT , (2.3.35)

with an orthogonal matrix U ∈ O(m), and we set for q > 0,

C :=
√
q


1/
√
s1

1/
√
s2

. . .
1/
√
sm

UT . (2.3.36)
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Using this matrix as outlined above yields

LΨ′(j0)
= Cj0LΨ(j0)C

T
j0 =

 q Ic ∗
∗ L� ∗

∗ q Ic

 . (2.3.37)

The middle square block L� ∈ IR(#∆j+1−2m)×(#∆j+1−2m) of LΨ(j0′)
consists of entries that remain un-

changed with respect to the unmodified wavelet basis Ψ(J). The blocks marked with asterisks contain
new non-zero entries. This basis transformation is particularly cheap in terms of complexity, since it is
only used on the coarsest level. The impact of these blocks on the condition number can be influenced
by the parameter q.

Remark 2.43 A Cholesky decomposition can also be used instead of the singular value decomposition.
In this case the resulting matrix LΨ′(j0)

has fewer non-zero values, but no further decrease of the condition
number is achieved.

Operator Adaptation to Preconditioning

We now introduce a basis transformation specifically designed for lowering the absolute values of
the condition number of the stiffness matrix

AJ := (a(ψλ, ψλ′))λ,λ′∈IIJ
, (2.3.38)

with the bilinear form defined in (1.3.24). The condition number of this positive definite symmetric
matrix in wavelet discretization depends on the properties of the wavelets as well as on the generator
basis. Of course, the condition κ(AJ) can never be smaller than κ(Aj0). Therefore, we seek a generator
basis adapted to the operator to minimize the absolute value of its condition number.
We make use of an orthogonal transformation matrix O ∈ O(#∆j0) to create a new, albeit completely
equivalent, generator basis for the coarsest level j0:

Φ′j0 := OT Φj0 , (2.3.39)

while leaving the higher level generator bases unchanged by this transformation. The resulting MRA

O : ΨII = {Φj0 ,Ψj0 ,Ψj0+1, . . .} 7−→ ΨII ′ := {Φ′j0 ,Ψj0 ,Ψj0+1, . . .} . (2.3.40)

is also completely equivalent to the original MRA since the orthogonal transformation does not change the
stability constants (S)(2.1.5). This change obviously requires an adaptation of the two-scale relation
(2.1.11) for level j0:

Φ′j0 = (M′
j0,0)

TΦj0+1 := (Mj0,0O)TΦj0+1 . (2.3.41)

To still ensure biorthogonality, the dual MRA must also be adapted accordingly. From now on, the
complete change of bases will always be accomplished by using M′

j0,0
instead of Mj0,0 in the course of

the wavelet transform (2.1.31). This is no antagonism, because operators are assembled in the generator
base ΦJ and then transform into the wavelet representation by the FWT. This can be implemented by
applying O subsequent to the wavelet transform TJ :

T′
J := TJ

(
O

I#(∆J\∆j0 )

)
. (2.3.42)

Theorem 2.13 is still valid as the relations (2.1.40) still hold with the same constants.

Lemma 2.44 The form of the stiffness matrix A′
J in the wavelet base ΨII ′ is

A′
J =

(
OTAj0O (aO)T

aO AJ\j0

)
(2.3.43)

The block AJ\j0 ∈ IR
#(∆J\∆j0 )×#(∆J\∆j0 ) remains unaffected.
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Proof: Assuming the following block structure of the symmetric matrix AJ ,

AJ =
(

Aj0 aT

a AJ\j0

)
,

with blocks a ∈ IR#(∆J\∆j0 )×#∆j0 ), we can directly deduce

A′
J = (T′

J)TAΦJ
T′
J

=
(

OT

I#(∆J\∆j0 )

)
AJ

(
O

I#(∆J\∆j0 )

)
=

(
OT

I#(∆J\∆j0 )

)(
Aj0 aT

a AJ\j0

)(
O

I#(∆J\∆j0 )

)
=

(
OTAj0O (aO)T

aO AJ\j0

)
.

The eigenvalues of A′
J are not different of AJ , because applying an orthogonal matrix does not

change these. The trick is to choose the orthogonal matrix O ∈ O(#IIj0) such that Dj0 = OTAj0O is
a diagonal matrix. This is possible because Aj0 is symmetric positive definite. Fixing this matrix O
leads to

A′
J =

(
� (aO)T

aO AJ\j0

)
. (2.3.44)

The setup allows for an improved optimal preconditioner for this operator, since any diagonal matrix
can easily be preconditioned by its own inverse. The matrix O does not change the spectral elements
of A′

J corresponding to the resolution levels j > j0, hence it has no negative impact. Using any other
preconditioner, for example D±s

1 of (2.2.14), will usually not result in better preconditioning of the
operator A′

J . We define the following diagonal matrix for preconditioning

(
D±s
{O,X}

)
λ,λ′

:= δ(λ,λ′) ·


(
(D−1/2

j0
)λ,λ′

)±s
|λ| = |λ′| = j0(

D±s
X

)
λ,λ′

otherwise
, (2.3.45)

where D±s
X could be any other preconditioner, for example (2.2.14) or (3.2.34).

Remark 2.45 The chosen orthogonal matrix O will be densely populated. In our wavelet construction of
Section 2.3.2, the minimum level is j0 = 3 and the application of O will therefore require 81 floating point
operations. The wavelet transform TJ,j0 , on the other hand, requires 95 floating point multiplications.
The overhead induced by O can thus lead to slightly higher execution times on level J = j0 + 1, but is
totally negligible on higher levels. Thus, the application of A′

J is still linear in time with respect to the
number of unknowns.

As we will see later in Section 5, this technique can lower the condition number of AJ in 1D by several
orders of magnitude over all levels.
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2.4. Multivariate Wavelets

2.4 Multivariate Wavelets

There are several ways to construct wavelets on manifolds in higher dimensions. Of course, the construc-
tion of Section 2.3.1 could be carried out directly. A relatively new approach for complex and irregular
domains Ω ⊂ IRn is given by the Finite-Element-Wavelets established in [58] and [44]. On domains
Ω ⊂ IRn which can be expressed as Cartesian products of intervals (perhaps after applying domain de-
composition strategies, see [13,31], further optimized and implemented on the sphere in [48]), multivariate
wavelets can be constructed by tensor products of wavelet bases on these intervals.

2.4.1 Cartesian Products

Given a MRA for the interval I = (0, 1), we can use it to form a MRA for the n-dimensional hypercube
� := �n := (0, 1)n preserving the regularity γ, γ̃ and moment conditions d, d̃ of Section 2.2.1. Thus,
we can construct multivariate wavelets on generally rectangular domains. By a tensor product we
mean combining univariate bases {Φ(j,l)}l=1,...,n

into one multivariate basis

Φ(�,j) := Φ(�n,j)(x) :=
n⊗
l=1

Φ(j,l)(xl), x := (x1, . . . , xn), (2.4.1)

which forms a single-scale basis of refinement level j on the domain �n. We will focus on the special case
where

Φ(j,l1) = Φ(j,l2), for all l1, l2,

which is the reason we will write Φ(�,j) instead of Φ(�,j,l). Each function φ(�,j,k) ∈ Φ(�,j), with
k = (k1, . . . , kn) now being a multi-index, has approximately support of 2−j(0, 1)n. We can associate
Φ(�,j) with the index set

∆�
j := ∆1

j × · · · ×∆n
j . (2.4.2)

Analogously to the above, we can build tensor products of the wavelet basis Ψ(J) of (2.1.28), i.e.,

Ψ(�,J) := Ψ(�,J)(x) :=
n⊗
i=1

Ψ(J)(xi) . (2.4.3)

Here, functions on different levels in different spatial dimensions are coupled. This construction is called
anisotropic tensorization in contrast to the isotropic construction outlined in [24] and implemented in,
for expample, [11]. The anisotropic approach has the benefit of being easier handling of the generator
basis Φ(�,j). We focus entirely on the anisotropic case. The wavelet basis functions ψj,k(x) ∈ Ψ(�,J) are
indexed as

ψj,k(x) := ψj1,...,jn;k1,...,kn
(x) :=

n∏
i=1

ψji,ki
(xi) . (2.4.4)

The tensor product wavelet space analogous to (2.1.51) will be referred to as

ΨII
(�) :=

∞⋃
j=j0−1

Ψ(�,J), (2.4.5)

with the infinite index set II(�) also given by the external product of the n index sets II of (2.1.39),

II(�) := II1 × · · · × IIn . (2.4.6)

We can now define the finite linear subspaces ΨII
(�,J) ⊂ ΨII

� by truncation of the index set II(�) exactly
as in (2.2.26). The definition of the finite index set for tensor product wavelets is now an extension of
the previous definition (2.2.24),

II(�,J) := {λ ∈ II(�) | |λ|∗ ≤ J}, (2.4.7)

where |λ|∗ := max {j1, . . . , jn} is the maximum norm. The connection to the wavelet basis Φ(�,J) is
established by the wavelet transform T(�,J),

Ψ(�,J) = TT
(�,J)Φ(�,J) . (2.4.8)
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The tensor product wavelet transform T(�,J) can be constructed as the tensor product of the univariate
transformations (2.1.31), i.e.,

T(�,J) := T(�,J,J−1) · · ·T(�,J,j0), T(�,J,j) :=
n⊗
i=1

TJ,j . (2.4.9)

The multiplicative cascading structure obviously retains the properties of the multiscale transform. In
the same way can this construction process be applied to the dual wavelets and to the inverse wavelet
transform. This construction also preserves the biorthogonality of the primal and dual tensor wavelets.

2.4.2 Multidimensional Operators

One of the advantages of tensor products is the ease of the generalization of the involved operators
to higher dimensions. We will now address the multi-dimensional counterparts to the one-dimensional
operators, which we will be using later on.

Gramian Matrix

The Gramian matrix is also called mass matrix, because it is the matrix of the basis’ own
L2-norm, i.e.,

MJ :=
(
Ψ(J),Ψ(J)

)
L2

:=
(∫

I

ψλ ψλ′dµ

)
λ,λ′∈IIJ

. (2.4.10)

We can conclude from the locality property (L)(2.1.8) that the Gramian matrix is uniformly sparse and
thus contains only O(#IIJ) non-zero entries.

Proposition 2.46 The n-dimensional mass matrix M(�,J) can be set up for tensor product wavelets as

M(�,J) = MJ ⊗ · · · ⊗MJ (2.4.11)

= TT
(�,J) (MΦJ

⊗ · · · ⊗MΦJ
)T(�,J) . (2.4.12)

Proof: By definition of the tensor product one has

M(�,J) =
(
Ψ(�,J),Ψ(�,J)

)
L2

=
(∫

�
ψλ1 · · ·ψλn

ψλ′1 · · ·ψλ′ndµ
)
λ,λ′∈II(�,J)

=
(∫

�
ψλ1ψλ′1 · · ·ψλn

ψλ′ndµ

)
λ,λ′∈II(�,J)

=
(∫

I

ψλ1ψλ′1dµ · · ·
∫

I

ψλn
ψλ′ndµ

)
λ,λ′∈II(�,J)

= MJ ⊗ · · · ⊗MJ .

By (2.4.8), we can expand (2.4.11) as

M(�,J) = TT
(�,J) (MΦJ

⊗ · · · ⊗MΦJ
)T(�,J) .

where MΦJ
is of course the mass matrix with respect to the single-scale basis ΦJ .

Hence, M(�,J) is also uniformly sparse and a matrix-vector multiplication of M(�,J) can be done
with O(#II(�,J)) arithmetic operations.

Stiffness Matrix

The stiffness matrix (2.3.38) can be decomposed into the Laplace matrix and the mass ma-
trix

AJ = SJ + a0 MJ :=
(
(∇ψλ,∇ψλ′)L2

)
λ,λ′∈IIJ

+ a0

(
(ψλ, ψλ′)L2

)
λ,λ′∈IIJ

(2.4.13)

using the two terms of (1.3.24). Employing the same arguments in Proposition 2.46, we conclude that
the stiffness matrix (and the decomposition) is uniformly sparse.
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Lemma 2.47 The n-dimensional stiffness matrix A(�,J) is given by

A(�,J) := (a(ψλ, ψλ′))λ,λ′∈II(�,J)
, (2.4.14)

where the tensor product structure can again be exploited to yield the equivalent form

A(�,J) = SJ ⊗MJ ⊗MJ ⊗ · · · ⊗MJ

+ MJ ⊗ SJ ⊗MJ ⊗ · · · ⊗MJ

...
+ MJ ⊗MJ ⊗MJ ⊗ · · · ⊗ SJ
+ a0 MJ ⊗MJ ⊗MJ ⊗ · · · ⊗MJ .

(2.4.15)

Proof: We focus on the first term in (2.4.13), since the mass term has already been dealt with in
Proposition 2.46. The proof of Proposition 2.46 can easily be extended to show the following calculation
rule for general functions f = f1 ⊗ · · · ⊗ fn, g = g1 ⊗ · · · ⊗ gn:

(f, g)L2
= (f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gn)L2

= (f1, g1)L2
⊗ · · · ⊗ (fn, gn)L2

.

Setting ψλ := ψλ1 ⊗ · · · ⊗ ψλn
and ψλ′ := ψλ′1 ⊗ · · · ⊗ ψλ′n , we now have for the first term

(
(∇ψλ,∇ψλ′)L2

)
λ,λ′∈II(�,J)

=

(
n∑
i=1

(∂iψλ, ∂iψλ′)L2

)
λ,λ′∈II(�,J)

=

(
n∑
i=1

(ψλ1 ⊗ · · · ⊗ ∂iψλi ⊗ · · · ⊗ ψλn ,

ψλ1 ⊗ · · · ⊗ ∂iψλ′i ⊗ · · · ⊗ ψλ′n
)
L2

)
λ,λ′∈II(�,J)

=

(
n∑
i=1

(
ψλ1 , ψλ′1

)
L2
⊗ · · · ⊗

(
∂iψλ1 , ∂iψλ′1

)
L2
⊗ · · ·

· · · ⊗
(
ψλn

, ψλ′n
)
L2

)
λ,λ′∈II(�,J)

=
n∑
i=1

MJ ⊗ · · · ⊗MJ︸ ︷︷ ︸
i−1

⊗SJ ⊗MJ ⊗ · · · ⊗MJ︸ ︷︷ ︸
n−i

.

Here we used the product rule in the second step and ∂ifj = 0 for i 6= j. Now follows (2.4.15) with
Proposition 2.46.

Proposition 2.48 Designating by SΦJ
and MΦJ

the matrices from (2.4.13), assembled in the single-
scale basis ΦJ , we can use the fast wavelet transform T(�,J) and compute A(�,J) as

A(�,J) = TT
(�,J)( SΦJ

⊗MΦJ
⊗MΦJ

⊗ · · · ⊗MΦJ

+ MΦJ
⊗ SΦJ

⊗MΦJ
⊗ · · · ⊗MΦJ

...
+ MΦJ

⊗MΦJ
⊗MΦJ

⊗ · · · ⊗ SΦJ

+ a0 MΦJ
⊗MΦJ

⊗MΦJ
⊗ · · · ⊗MΦJ

) T(�,J) .

(2.4.16)

Since only uniformly sparse matrices are used in the setup of this matrix, we can again conclude that
A(�,J) can be applied in O(#II(�,J)) operations.

Diagonal Scaling

As noted before, there are several distinct diagonal scalings which satisfy Corollary 2.22, and ev-
ery one differs in its tensor product construction. We will now show the construction of the matrix D±s

1,J ,
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which is defined through (2.2.14) and (2.2.25).
Definition (2.2.14) for the diagonal scaling operator Ds

1,J needs be modified in the tensor product setting
using multi-index notation.

Proposition 2.49 We can express Ds
1,(�,J) for s ≥ 0 with the following rule:

Ds
1,(�,J) = 1

n ( Ds
1,J ⊗ IJ ⊗ IJ ⊗ · · · ⊗ IJ

+ IJ ⊗ Ds
1,J ⊗ IJ ⊗ · · · ⊗ IJ

...
. . .

+ IJ ⊗ IJ ⊗ · · · ⊗ IJ ⊗ Ds
1,J ) .

(2.4.17)

For s < 0, we set

Ds
1,(�,J) :=

(
D−s

1,(�,J)

)−1

, (2.4.18)

which can be computed efficiently by element-wise inversion of (2.4.17), because Ds
1,(�,J) is a diagonal

matrix.

This concludes our chapter on wavelets. We know how to construct the wavelet form of operators on
domains of cartesian products of the interval using our wavelets of Section 2.3.2. We will use this
knowledge for discretization of our control problem with Dirichlet boundary control. For this, we need
an appropriate weak form of an elliptic PDE which allows for a flexible update of the Dirichlet boundary
conditions. As we will see, this can be very elegantly accomplished by formulating the PDE and the
boundary conditions as a saddle point problem.
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3 Elliptic Boundary Value Problems

This chapter serves as an introduction into saddle point problems and especially to formulate elliptic
boundary value problems as saddle point problems.
There is more than one way to weakly formulate the elliptic boundary value problem from Section 3.2,
with specific consideration of the essential boundary conditions. One of the first works on the boundary
penalty method (BPM) is by Babus̆ka [5] from 1973. It uses a penalty parameter ε to append
the Dirichlet boundary conditions weakly; thus, forming a problem with Robin boundary conditions
(see [61]). This method can simultaneously handle Dirichlet and Neumann boundary conditions. However,
the method is not recommended for iterative solvers (see [10]) since the penalty parameter has a strong
negative impact on the condition of the problem. Up to now, no optimal preconditioner is known for this
situation.
As an alternative, the Lagrange multiplier method was introduced by Babus̆ka in 1973, see [4]. Here
the space of test functions is chosen not to incorporate any Dirichlet boundary conditions. Instead, these
are supposed to be attained attained by the Lagrangian multipliers only where needed. Important for us
is that this method allows for optimal preconditioning by wavelets.

3.1 Saddle Point Problems

Let us first formulate saddle point problems in an abstract setting. Consider Hilbert spaces X and Q
with their dual spaces X ′ and Q′ together with their respective dual forms 〈·, ·〉X×X′ , 〈·, ·〉Q×Q′ . We
define the product Hilbert space H and its dual H′ as

H := X ×Q′, H′ := X ′ ×Q . (3.1.1)

This definition of H involving Q′ instead of Q is more convenient for the specification considered later.
The H-inner product will be given by

(·, ·)H := (·, ·)X + (·, ·)Q′ , (3.1.2)

inducing the canonical norm ‖ · ‖H on H as∥∥∥∥( vq̃
)∥∥∥∥2

H
:= (v, v)X + (q̃, q̃)Q′ = ‖v‖2X + ‖q̃‖2Q′ for all v ∈ X, q̃ ∈ Q′ . (3.1.3)

3.1.1 Abstract Saddle Point Problems

Suppose a(·, ·) : X ×X → IR is a continuous bilinear form with some constant α2 > 0

a(v, w) ≤ α2‖v‖X‖w‖X , for all v, w ∈ X, (3.1.4)

and likewise b(·, ·) : X ×Q′ → IR with some β2 > 0,

b(v, q̃) ≤ β2‖v‖X‖q̃‖Q′ , for all v ∈ X, q̃ ∈ Q′ . (3.1.5)

We consider the following problem:

Problem 3.1 [Saddle Point Problem]
For given f ∈ X ′ and u ∈ Q, find y ∈ X, p ∈ Q′ which solve the extremal problem

inf
v∈X

sup
q̃∈Q′

1
2
a(v, v)− 〈f, v〉X′×X + b(v, q̃)− 〈u, q̃〉Q×Q′ . (3.1.6)

We can formulate Problem 3.1 equivalently as the search for the minimum y ∈ X of

J(v) :=
1
2
a(v, v)− 〈f, v〉X′×X (3.1.7)

under the constraint of
b(v, q̃) = 〈u, q̃〉Q×Q′ , for all q̃ ∈ Q′ . (3.1.8)
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This minimization problem can be solved by appending the constraints by means of a Lagrangian
multiplier to the functional (3.1.7), by defining

K(v, q̃) := J(v) + b(v, q̃)− 〈u, q̃〉Q×Q′ (3.1.9)

and solving the system of equations resulting from the necessary, and (as we will see later) in our case
also sufficient minimization conditions

∂K(v, q̃) = 0 . (3.1.10)

This procedure is justified by the fact that the minimum of (3.1.7) will also be the minimum of (3.1.9),
if q̃ is indeed an element for which (3.1.8) is fulfilled.
Explicitly calculating (3.1.10) leads to the following reformulation of Problem 3.1:

Problem 3.2 [Saddle Point Problem - Optimality Conditions]
Given (f, u) ∈ H′, find (y, p) ∈ H such that

a(y, v) + b(v, p) = 〈f, v〉X′×X , for all v ∈ X,
b(y, q̃) = 〈u, q̃〉Q×Q′ , for all q̃ ∈ Q′, (3.1.11)

Any solution (y, p) ∈ H of Problem 3.2 satisfies

K(y, q̃) ≤ K(y, p) ≤ K(v, p), for all v ∈ X, q̃ ∈ Q′, (3.1.12)

which is therefore called saddle point property. Recall from Section 1.3.1 that the bilinear forms
a(·, ·), b(·, ·) define linear continuous operators A : X → X ′, B : X → Q, along with their adjoints
A′ : X ′ → X, B′ : Q′ → X ′, by

〈v,A′w〉X×X′ = 〈Av,w〉X′×X := a(v, w), (3.1.13)
〈v,B′q̃〉X×X′ = 〈Bv, q̃〉Q×Q′ := b(v, q̃) . (3.1.14)

Hence, these operators are defined by their roles as functionals Av ∈ X ′ and B′q̃ ∈ Q′ acting on elements
of the space X. We can use these operators to rephrase Problem 3.2 as follows:

Problem 3.3 [Saddle Point Problem - Operator Representation]
Given (f, u) ∈ H′, find (y, p) ∈ H such that

Ay +B′ p = f ,
B y = u, (3.1.15)

which can be written as one linear system as(
A B′

B 0

)(
y
p

)
=
(
f
u

)
. (3.1.16)

Next, we discuss under which conditions a solution (y, p) ∈ H to Problem 3.3 exists and is unique.
To this end, we define the kernel of operator B as

kerB := {v ∈ X | b(v, q̃) = 0 for all q̃ ∈ Q′} ⊂ X . (3.1.17)

We quote the following result from [46] which was first established by F. Brezzi in [9].

Theorem 3.4 Let the linear operator A be invertible on kerB ⊆ X, i.e., for some constant α1 > 0

inf
v∈kerB

sup
w∈kerB

〈Av,w〉X′×X
‖v‖X‖w‖X

≥ α1,

inf
v∈kerB

sup
w∈kerB

〈A′v, w〉X′×X
‖v‖X‖w‖X

≥ α1 .
(3.1.18)

Let further the range of B be closed in Q, e.g. for some constant β1 > 0 the inf-sup condition

inf
q̃∈Q′

sup
v∈X

〈Bv, q̃〉Q×Q′
‖v‖X‖q̃‖Q′

≥ β1 > 0 (3.1.19)
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holds. Then there exists a unique solution (y, p) ∈ H to Problem 3.3 for given (f, u) ∈ H′. That is,

L :=
(
A B′

B 0

)
: H → H′ (3.1.20)

is an isomorphism, and one has the norm equivalence

cL

∥∥∥∥( vq̃
)∥∥∥∥

H
≤
∥∥∥∥L( vq̃

)∥∥∥∥
H′
≤ CL

∥∥∥∥( vq̃
)∥∥∥∥

H
(3.1.21)

for any (v, q̃) ∈ H, where the constants cL, CL are given as

cL :=

(
1

α1β1

(
1 +

α2

α1

)
+ max

{
2
α2

1

,
1
β2

1

(
1 +

α2

α1

)2

+
(
α2

β2
1

(
1 +

α2

α1

))2
})−1/2

CL :=
√

2(α2
2 + β2

2) .

Remark 3.5 The first preprequisite is trivially fulfilled if A is invertible on all X. In this case,

α1‖v‖X ≤ ‖Av‖X′ ≤ α2‖v‖X ⇐⇒ ‖Av‖X′ ∼ ‖v‖X , for all v ∈ X,

follows with continuity (3.1.4). Our bilinear form, stemming from the elliptic partial differential equations
of Section 1.3.2, is of this type, see Section 3.2.

The inf-sup condition (3.1.19) is always satisfied if B is surjective, i.e., rangeB = Q. This will be the
case in Section 3.2 when we consider B to be the trace operator onto the boundary Γ ⊆ ∂Ω ⊂ IRn−1 of
a domain Ω ⊂ IRn.

3.1.2 Wavelet Discretization

Since we now have an isomorphism L : H → H′, we can use the theory from Section 2.2.3 and represent
L in standard wavelet representation, which will be denoted by L.
We choose specifically the spaces X = H+m(Ω) and Q = H+s(Γ) as Sobolev spaces of orders m, s ≥ 0 on
the bounded domains bounded in IRn. In particular, the domain Γ can be a subset of Ω. For example,
if Ω = �n := (0, 1)n, then Γ ⊆ ∂Ω may be an edge or a face of this cube.
With the background of Section 2, we have assured the existence of biorthogonal wavelet bases Ψm

Ω , Ψ̃m
Ω

and Ψs
Γ,Ψ̃s

Γ for the spaces X, Q and their duals X ′,Q′, such that the norm equivalences (2.2.12), (2.2.13)
hold for the required ranges,

‖v‖X ∼ ‖D−m
Ω v‖`2(IIX), ‖ṽ‖X′ ∼ ‖D+m

Ω ṽ‖`2(IIX), (3.1.22)

and
‖q‖Q ∼ ‖D−s

Γ v‖`2(IIQ), ‖q̃‖Q′ ∼ ‖D+s
Γ q̃‖`2(IIQ) . (3.1.23)

Hence, in accordance with the notation introduced in Corollary 2.22, a wavelet basis for H = X × Q′

is given by ΨH :=
(
Ψm

Ω , Ψ̃
s
Γ

)T
with the index set IIH := IIX × IIQ. Likewise, a basis for the dual space

H′ = X ′ ×Q is Ψ̃H :=
(
Ψ̃m

Ω ,Ψ
s
Γ

)T
.

We can expand the right hand side F := (f, u)T ∈ H′ in these scaled wavelet bases as

F = (f, u)T =
(
fT Ψ̃m

Ω ,u
TΨs

Γ

)T
=: FT Ψ̃H . (3.1.24)

The solution vector Y = (y, p)T ∈ H has an analogous expansion

Y = (y, p)T =
(
yTΨm

Ω ,p
T Ψ̃s

Γ

)T
=: YTΨH . (3.1.25)

By Section 2.2.3, the discretized infinite-dimensional operator L from Problem 3.3 is now given by

L
(

y
p

)
:=
(

A BT

B 0

)(
y
p

)
=
(

f
u

)
, (3.1.26)
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with the operators A,B in standard wavelet form, see Section 2.2.3,

A := 〈Ψm
Ω , AΨm

Ω 〉 = D−m
Ω 〈ΨΩ, AΨΩ〉D−m

Ω ,

B := 〈Ψ̃s
Γ, BΨm

Ω 〉 = D+s
Γ 〈Ψ̃Γ, BΨΩ〉D−m

Ω .
(3.1.27)

The coefficient vectors f ,g are calculated by the primal and dual expansions (2.1.53), (2.1.54), i.e.,

f = D−m
Ω 〈ΨΩ, f〉, u = D+s

Γ 〈Ψ̃Γ, u〉 . (3.1.28)

Since all prerequisites from Section 2.2.3 are fulfilled, we can formulate the following result.

Corollary 3.6 The linear operator L defined in (3.1.26) is an `2-automorphism, i.e., for every
(v, q̃) ∈ `2(IIX × IIQ) we have

cL

∥∥∥∥(v
q̃

)∥∥∥∥
`2

≤
∥∥∥∥L(v

q̃

)∥∥∥∥
`2

≤ CL

∥∥∥∥(v
q̃

)∥∥∥∥
`2

(3.1.29)

with constants cL, CL only depending on cL,CL from (3.1.21) and the constants in the norm equivalences
(3.1.22) and (3.1.23).

3.1.3 Stability - The LBB-Condition

We must now investigate under which conditions the infinite-dimensional operator L remains an `2-
isomorphism when we progress from the infinite index sets IIX and IIQ to the finite index set IIX,σ ⊂ IIX
and IIQ,π ⊂ IIQ. Here JX ≡ σ and JQ ≡ π should be the level of resolutions on the space X and Q,
respectively.
We define the finite subset of indices for the product space H with JH := (σ, π) as

IIH,JH := IIX,σ × IIQ,π ⊂ IIH, (3.1.30)

which defines a subspace Ψ(H,JH) of the wavelet space ΨH. Defining IIX,σ, IIQ,π as in (2.4.7), this subspace
is linear. The corresponding spaces are denoted as

Xσ := S(Ψ(Ω,σ)), Qπ := S(Ψ(Γ,π)), (3.1.31)

and accordingly for the dual side X ′
σ, Q

′
π. Hence we have the finite dimensional product spaces

HJH := H(σ,π) := Xσ ×Q′π ⊂ H, H′JH := H′(σ,π) := X ′
σ ×Qπ ⊂ H′ . (3.1.32)

The finite analogons to any set, vector and operator are constructed by deleting any elements, rows or
columns referring to indexes not contained in the finite index sets.
The right hand side FJH := (fσ, uπ) and the solution vector YJH := (yσ, pπ) are, as in Section 2.2.5,
expanded in terms of the finite wavelet bases as

FJH = FTJHDH,JHΨ(H,JH) := (fTσ D−m
Ω,σΨ̃(Ω,σ),uTπD+s

Γ,πΨ(Γ,π)) ∈ H′JH ,
YJH = YT

JH
DH′,JHΨ̃(H,JH) := (yTσD+m

Ω,σΨ(Ω,σ),pTπD−s
Γ,πΨ̃(Γ,π)) ∈ HJH .

(3.1.33)

The finite analogons of the operators (3.1.27) are

Aσ := D−m
Ω,σ〈Ψ(Ω,σ), AΨ(Ω,σ)〉D−m

Ω,σ ,
Bσ,π := D+s

Γ,π〈Ψ̃(Γ,π), BΨ(Ω,σ)〉D−m
Ω,σ .

(3.1.34)

The discrete finite saddle point problem can then be formulated in operator form as follows.

Problem 3.7 [Saddle Point Problem - Finite Discretization]
Given (fσ,gπ), find (yσ,pπ) such that

LJH

(
yσ
pπ

)
:=
(

Aσ BT
σ,π

Bσ,π 0

)(
yσ
pπ

)
=
(

fσ
uπ

)
(3.1.35)

holds.
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To guarantee the existence of a solution to this problem, we can again use Theorem 3.4, which specifically
applies to finite dimensional spaces. We have to assure that the spaces Xσ, Qπ are chosen such that the
ellipticity conditions (3.1.18) for a(·, ·) and the inf-sup condition (3.1.19) for b(·, ·) are satisfied with
respect to these spaces.
The continuity inequalities (3.1.4), (3.1.5) are obviously fulfilled for subspaces Xσ ⊂ X and Qπ ⊂ Q and
hold uniformly with the same constants α2, β2.
In contrast, the discrete ellipticity condition, the analogon to (3.1.18),

inf
v∈kerBσ,π

sup
w∈kerBσ,π

〈Aσv,w〉X′×X
‖v‖X‖w‖X

≥ α̃1,

inf
v∈kerBσ,π

sup
w∈kerBσ,π

〈
AT
σv,w

〉
X′×X

‖v‖X‖w‖X
≥ α̃1,

(3.1.36)

does not immediately carry over, since not automatically

kerBσ,π ⊂ kerB, (3.1.37)

holds for the kernel of Bσ,π,

kerBσ,π := {vσ ∈ Xσ | b(vσ, q̃π) = 0 for all q̃π ∈ Q′π} ⊂ Xσ ⊂ X . (3.1.38)

The next definition is taken from [21].

Definition 3.8 [FEP]
The discretization Xσ ⊂ X,Qπ ⊂ Q is said to have Full Equilibrium Property if (3.1.37) holds.

Obviously, this is a very strong property and it cannot be hoped that this is valid automatically for any
operator B and its discretizations. Of course, if (3.1.37) is assured to be true, then the discrete ellipticity
(3.1.36) follows directly from general ellipticity (3.1.18).
The discrete analogon of the inf-sup condition (3.1.19) for the pair Xσ, Q′π reads as follows.

Definition 3.9 [LBB-condition]
We say Bσ,π satisfies the Ladysens̆kaya-Babus̆ka-Brezzi-condition if a constant β̃1 > 0 exists such
that

inf
q̃∈Q′π

sup
v∈Xσ

〈Bσ,πv, q̃〉Q×Q′
‖v‖X‖q̃‖Q′

≥ β̃1 > 0, (3.1.39)

holds uniformly in σ, π.

The LBB-condition can be interpreted as a way of ensuring that no element q̃ ∈ Q′π is orthogonal to
any element Bσ,πv ∈ Q with respect to 〈·, ·〉Q×Q′ and the parameter β̃1 expresses the magnitude of that
orthogonality property.
There are now several criteria which ensure the validity of the LBB-condition and the discrete ellipticity
condition. The wavelet setting of this section provides some necessary and sufficient conditions which
rely especially on biorthogonality (B)(2.1.52) and the explicit representation of the dual space by the
dual MRA of Section 2.1.4. We give a short summary of some results which can be used in the framework
for our control problem of Section 5.

Probably the most apparent way to fulfill the LBB- and FEP-conditions is given by a general result
from [21].

Corollary 3.10 If the spaces Xσ and Qπ fulfill B(Xσ) = Qπ or equivalently B′(Q′π) = X ′
σ, then both

the LBB- and the FEP-condition are valid.

One situation where this applies is when the domain Ω is given as the cartesian product of, for example,
an interval I = (0, 1) and Γ = (0, 1) ⊂ ∂Ω. We can then choose biorthogonal wavelet spaces ΨΓ, Ψ̃Γ on
(0, 1) and use the tensor product construction of Section 2.4 with these wavelets on the domain Ω = �n.
If the operator B is given through the trace operator

γ0 v = v|Γ, v ∈ X,

then the prerequisites of Corollary 3.10 are satisfied.

Another way to satisfy the LBB-condition, which fits the wavelet setting is Fortin’s criterion from [36].
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Theorem 3.11 Let the bilinear form b(·, ·) : X × Q′ → IR fulfill the inf-sup condition (3.1.19). If
there is a uniformly bounded linear projector Πσ : X → Xσ such that for any v ∈ Xσ

b(v −Πσv, q̃π) = 0 for all q̃π ∈ Q′π, (3.1.40)

then the LBB-condition (3.1.39) holds for b(·, ·).

In the wavelet setting a bounded linear projector appears naturally during the construction process, cf.
(2.1.44) and (2.1.45).

A general approach is given in [27]. In case B is not a trace operator from the space X onto the space
Q, the equilibrium condition (3.1.37) may not hold. Thus, as a generalization of the above setting, we
consider the case where Qπ is explicitly not given as the trace of the space Xσ.
This setting depends only on stable multiresolution spaces Sj , S̃j of MRAs S, S̃ on both Ω and Γ which
satisfy Jackson- and Bernstein-inequalities (2.2.10),(2.2.11) of certain orders. Also, the boundedness
of operator B must be given and a Trace Theorem 1.20 must hold. The main result of [27] states that
the LBB-condition is satisfied whenever

σ = π + L, L = L(Ω,Γ,S, S̃, B) > 0, (3.1.41)

which, in other words, means that the discretization level on the domain Ω must be chosen somewhat
higher than the mesh size of the space on Γ. This result has the advantage of enforcing no constraints to
the spatial dimensions or requiring any interrelation of the domains Ω and Γ.

3.1.4 Numerical Considerations

Now that we can ensure finite stability of the discretized saddle point problems, it remains to solve
the system of equations (3.1.35) numerically. The implementation details of the algorithms for solving
(3.1.26) can be found in Section 3.3.

Error Estimates

We quote a general result from [10] which gives an error estimate (cf. Lemma 1.39) for the solu-
tion of the discretized problem (3.7) with respect to the solution of the continuous problem (3.3).

Proposition 3.12 Let (y, p) ∈ X × Q′ be the solution of the continuous saddle point problem 3.3 and
(yσ, pπ) ∈ Xσ ×Q′π be the solution of the discrete finite problem 3.7. Then the error estimates

‖y − yσ‖X ≤
(

1 +
α2

α̃1

)(
1 +

β2

β̃1

)
inf
v∈Xσ

‖y − v‖X +
β2

α̃1
inf
q̃∈Q′π

‖p− q̃‖Q′ (3.1.42)

‖p− pπ‖Q′ ≤
(

1 +
β2

β̃1

)
inf
q̃∈Q′π

‖p− q̃‖Q′ +
α2

β̃1

inf
v∈X
‖y − v‖X (3.1.43)

hold with the constants from (3.1.18), (3.1.19), (3.1.36) and (3.1.39).

This means the numerical error between y and yσ can be estimated by the best approximation from the
spaces Xσ and Q′π. The ellipticity and continuity constants are uniformly bounded, i.e., they do not
depend on σ nor π. With the assumption (R)(2.1.6), we can conclude yσ → y for σ →∞.
These results can be further refined in case the FEP-condition is valid. We quote from [8] the following

Corollary 3.13 Let the prerequisites of Proposition 3.12 and additionally the FEP-condition be satisfied.
Then one has

‖y − yσ‖X ≤
α2

α̃1
inf
v∈Xσ

‖y − v‖X . (3.1.44)

Also, we can derive for uniform refinements as in Section 2.2.4 the estimate

inf
v∈Xσ

‖y − v‖X . ‖y‖X . (3.1.45)
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Together with (3.1.44) this yields
‖y − yσ‖X . ‖y‖X . (3.1.46)

The right hand side of (3.1.46) can be bounded by a-priori error estimates for the unique solution
(y, p) ∈ H with right hand side (f, u) ∈ H′, i.e.,

‖y‖X ≤ 1
α1
‖f‖X′ +

1
β1

(
1 +

α2

α1

)
‖u‖Q, (3.1.47)

‖p‖Q′ ≤
1
β1

(
1 +

α2

α1

)
‖f‖X′ +

α2

β2
1

(
1 +

α2

α1

)
‖u‖Q, (3.1.48)

see [10] for instance.

Assembly in Wavelet Coordinates

In accordance with Section 2.2.3, the operator LJH will not be assembled during the computa-
tions. Recall that we always use (2.2.18). Let the following relations hold for the domain Ω, the wavelets
and their single-scale functions:

Ψ(Ω,JH) = TT
Ω,JHΦΩ,JH , Ψ̃(Ω,JH) = T̃T

Ω,JHΦ̃Ω,JH .

Exactly the same relations should hold for the wavelets ΨΓ, Ψ̃Γ on the domain Γ. The wavelet transform
TH,JH for the space HJH can now be written in matrix representation as

TH,JH :=
(

TΩ,σ 0
0 T̃Γ,π

)
, (3.1.49)

and the diagonal scaling DH,JH accordingly as

DH,JH :=
(

D−m
Ω,σ 0
0 D+s

Γ,π

)
. (3.1.50)

Then we can express the system (3.1.26) as

DH,JHTT
H,JHLΦ,JHTH,JHDH,JH YH,JH = DH,JHTT

H,JHFΦ,JH , (3.1.51)

with the single-scale version of the operator LΦ,JH and the vector FΦ,JH given as

LΦ,JH :=

(
〈ΦΩ,σ, AΦΩ,σ〉 〈Φ̃Γ,π, BΦΩ,σ〉

T

〈Φ̃Γ,π, BΦΩ,σ〉 0

)
,

FΦ,σ :=
(
〈ΦΩ,σ, f〉
〈Φ̃Γ,π, Y 〉

)
.

(3.1.52)

Thus, after the solution vector YH,JH is determined, we can calculate

YΦ,JH =
(
〈Φ̃Ω,σ, y〉
〈ΦΓ,π, p〉

)
= TH,JHDH,JHYH,JH (3.1.53)

and obtain the solution yσ as
yσ = 〈Φ̃Ω,σ, y〉ΦΩ,σ ∈ Xσ ⊂ X . (3.1.54)
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3.2 Elliptic Boundary Value Problems

Let Ω ⊆ � ⊂ IRn be a domain bounded by the cube � = �n = (0, 1)n. We assume Ω has a Lipschitz
continuous boundary ∂Ω ∈ C0,1 and Γ ⊆ ∂Ω is a subset of ∂Ω with strictly positive surface measure.
We consider the following

Problem 3.14 [Elliptic Boundary Value Problem]
For given functions fΩ ∈ (H1(Ω))′ and u ∈ H1/2(Γ), search y ∈ H1(�) satisfying

−∇ · (a∇y) + a0 y = fΩ, in Ω,
y = u, on Γ,

(a∇y) · n = 0, on ∂Ω \ Γ,
(3.2.1)

where n = n(x) is the outward normal at x ∈ ∂Ω \ Γ. Moreover, a(x) = (ai,j(x))i,j is uniformly positive
definite on Ω and a0 > 0.

In order to apply the theory from Section 3.1, we transform the above problem into a weak formulation,
expressing the equations (3.2.1) by bilinear forms. We can formulate the partial differential equation
(3.2.1) by the theory of Section 1.3.2 as follows:
Given fΩ ∈ (H1(Ω))′ and u ∈ H1/2(Γ), find the solution y ∈ H1(Ω), which solves

aΩ(y, v) = 〈fΩ, v〉Ω for all v ∈ H1
0,Γ(Ω),

y|Γ = u,
(3.2.2)

where the space of the test functions is defined as

H1
0,Γ(Ω) := {v ∈ H1(Ω) | v|Γ = 0} . (3.2.3)

The form 〈·, ·〉Ω is the dual form between function spaces on Ω. The bilinear form aΩ(·, ·) is given by
Section 1.3.2 as

aΩ(v, w) :=
∫

Ω

(a∇v · ∇w + a0 vw) dµ . (3.2.4)

3.2.1 The Fictitious Domain–Lagrange Multiplier Approach

Including the essential boundary conditions in our weak formulation, a standard approach was introduced
in [4] and is known as the Lagrange multiplier method. We will describe it together with a fictitious
domain scheme.
In the setting from beginning of Section 3.2, we call � ⊂ IRn the fictitious domain. We extend the
problem from the domain Ω onto the fictitious domain � without loosing that our problem is well-defined.
Let the right hand side fΩ ∈ (H1(Γ))′ be expanded onto the cube � such that

f := f� ∈ (H1(�))
′
, fΩ = f� |Ω . (3.2.5)

Moreover, we extend the bilinear form aΩ(·, ·) to H1(�)×H1(�) by defining

a(v, w) := a�(v, w) :=
∫

�
(a∇v · ∇w + a0 vw) dµ, (3.2.6)

where a is some appropriate extension of a from (3.2.1) to � satisfying a to be uniformly positive definite.
We can now turn to the Dirichlet boundary constraints. To express the essential boundary conditions,
we need the trace operator from Section 1.2.2,

γ0v = v|Γ . (3.2.7)

The trace is well-defined for any v ∈ H1(�) since Γ is Lipschitzian as a subset of ∂Ω. Thus, we have
γ0v ∈ H1/2(Γ), cf. Theorem 1.20. We define the bilinear form b(·, ·) by setting

b(v, q̃) := 〈γ0v, q̃〉H1/2(Γ)×(H1/2(Γ))′ =
∫

Γ

v|Γ q̃ ds, v ∈ H1(�), q̃ ∈ (H1/2(Γ))
′
, (3.2.8)

which is well-defined because of the above remarks.
Instead of Problem 3.14, consider now the following saddle point problem of type Problem 3.1:
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Problem 3.15 [Elliptic Boundary Value Problem - Saddle Point Formulation]
For f ∈ (H1(�))′ and u ∈ H1/2(Γ), find the solution of

inf
v∈H1(Ω)

sup
q̃∈(H1/2(Γ))′

1
2
a(v, v)− 〈f, v〉(H1(�))′×H1(�) + b(v, q̃)− 〈u, q̃〉H1/2(Γ)×(H1/2(Γ))′ . (3.2.9)

In this formulation, the essential boundary conditions are not enforced in H1(Ω), but appended by
the Lagrangian multiplier q̃ ∈ (H1/2(Γ))

′
. By design, this technique allows for a decoupling of the

differential operator from the boundary constraints. Consequentially, changing boundary conditions or
changing boundaries can be treated by updating the right hand side g or by adapting the trace operator
γ0 to a new domain. Since these actions only involve a lower dimensional manifold, this can be done
relatively easy compared to the cost a change of the domain Ω would induce. Specifically, changes to the
domain Ω excluding Γ have no effect on the setup, as long as the domain is still bounded by the same
fictitious domain �. The topology of the fictitious domain is obviously chosen to be as simple as possible
to allow for an easy setup and evaluation of the bilinear form (3.2.6).
In the case of the Dirichlet problem, the Lagrange multipliers of the solution p ∈ (H1/2(Γ))

′
can be

shown to be the conormal derivative of y at Γ, p = n · (a∇y). This is often interpreted as the stress of
the solution at the boundary.
We can now employ the theory from Section 3.1 and derive the optimality conditions of (3.2.9). This
yields the following reformulation of our elliptic boundary value problem:

Problem 3.16 [Elliptic Boundary Value Problem - Optimality Conditions]
Given (f, u) ∈ (H1(�))′ ×H1/2(Γ), find (y, p) ∈ H1(�)× (H1/2(Γ))

′
such that

a(y, v) + b(v, p) = 〈f, v〉(H1(�))′×H1(�), for all v ∈ H1(�),
b(y, q̃) = 〈u, q̃〉H1/2(Γ)×(H1/2(Γ))′ , for all q̃ ∈ (H1/2(Γ))

′
,

(3.2.10)

holds.

As formulated in the abstract setting from Section 3.1.1, we can write (3.2.10) in operator form. The
linear operator A is defined through the bilinear form (3.2.6) analogously to (3.1.13), i.e.,

〈Av,w〉(H1(�))′×H1(�) := a(v, w) . (3.2.11)

Again, we drop the spaces from the dual forms if the exact form can be derived immediately. Note that
this operator A is self-adjoint, i.e., A′ = A because of the symmetry of the bilinear form (3.2.6),

〈Av,w〉 = a(v, w) = a(w, v) = 〈Aw, v〉 = 〈w,A′v〉 = 〈A′v, w〉 . (3.2.12)

The operator B is set up accordingly using the bilinear form (3.2.8) and the definition of (3.1.14), i.e.,

〈v,B′q̃〉H1(�)×(H1(�))′ = 〈Bv, q̃〉H1/2(Γ)×(H1/2(Γ))′ := b(v, q̃) . (3.2.13)

This operator is surjective which implies kerB′ = {0}.

As in Section 3.1, H := H1(�) × (H1/2(Γ))
′
is the product space of the solution spaces. The elements

solving (3.2.9) will be denoted by (y, p) ∈ H. The right hand side (f, g) ∈ H′ will be an element of the
dual space H′ = (H1(�))′ ×H1/2(Γ). Problem 3.16 written in operator form reads:

Problem 3.17 [Elliptic Boundary Value Problem - Operator Representation]
Given (f, u) ∈ H′, find (y, p) ∈ H, such that

L

(
y
p

)
:=
(
A B′

B 0

)(
y
p

)
=
(
f
u

)
. (3.2.14)

This operator L is now obviously also self-adjoint, i.e., L′ = L. However, inherent in the setup is
that, because of the nature of the Saddle Point Problem 3.15, the linear system (3.2.14) is indefinite.
This means that to actually solve Problem 3.17 for any discretization, we have to use different iterative
solvers than for system with positive definite system matrices. The most well-known algorithms for such
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indefinite symmetric systems are Uzawa-type algorithms, see Section 3.3 for the implementation details
of those solvers.
It remains to answer the question whether the solution of Problem 3.17 is really a solution of Problem 3.15,
when restricted to the domain Ω. This can be answered positively if Γ = ∂Ω, see [37]. In case Γ ⊂ ∂Ω,
this is no longer automatically valid and still an open question in general. In fact this depends on the
way the right hand side extension is constructed, cf. [53].
This will, however, not pose a problem in Section 4.

3.2.2 The Schur Complement

The solution to Problem 3.17 can be expressed analytically using only the operators A and B and the
right hand side data. Because of the ellipticity and continuity of a(·, ·), the operator A is invertible and
we can introduce the Schur complement. This is the operator

S := BA−1B′, S : (H1/2(Γ))
′
→ H1/2(Γ) (3.2.15)

which is positive definite, because B is surjective and A is positive definite. It can be used to define an
energy norm of the operator L on the space H as∥∥∥∥( vq̃

)∥∥∥∥2

L

:= ‖v‖2A + ‖q̃‖2S = 〈Av, v〉(H1(�))′×H1(�) + 〈Sq̃, q̃〉H1/2(Γ)×(H1/2(Γ))′ . (3.2.16)

If B is bounded and the inf-sup condition (3.1.19) holds, then

‖q̃‖S ∼ ‖q̃‖(H1/2(Γ))′ , (3.2.17)

see [21] for a proof. Since we already have ‖ · ‖A ∼ ‖ · ‖H1(�), we get the equivalence of the norm ‖ · ‖H
of (3.1.3) and ‖ · ‖L from (3.2.16). The Schur complement can also be used to rewrite Problem 3.17 by
eliminating y as

Sp = BA−1f − u . (3.2.18)

The above remarks show that S is invertible and can be brought to the other side in this equation.
Substituting p into the first equation of (3.2.14) leads to an explicit representation of y as

y = A−1B′S−1u+A−1(I −B′S−1BA−1)f (3.2.19)

=: A−1(B̃′u+ f̃) . (3.2.20)

The new operator B̃ := S−1B obviously inherits the surjectivity property from operator B. The Schur
complement also determines the efficiency of the Uzawa algorithms of Section 3.3, although of course,
on never explicitly calculates A−1.

3.2.3 The Case Ω = �, Γ = |

We will now discuss the elliptic boundary value problem of type Problem 3.14 which will emerge in the
setting of our control problem from Section 4.3.
Let I = (0, 1) and Ω = � = (0, 1)n ⊂ IRn for a fixed n ≥ 2. For illustration, we will focus on the case
n = 2, since it is easier to visualize. This domain has a piecewise smooth boundary ∂Ω, in particular
∂Ω ∈ C0,1.
The task is now to find a solution to Problem 3.14,

−∇ · (a∇y) + a0 y = f , in Ω,
y = u, on Γ,

(a∇y) · n = 0, on ∂Ω \ Γ,
(3.2.21)

To solve this problem we clearly do not need to employ of the fictitious domain approach of Section 3.2.1.
We assume our Dirichlet boundary Γ to be one of the two opposing faces of the hypercube � with
x = (0, x2, . . . , xn) and x = (1, x2, . . . , xn) for 0 ≤ x2, . . . , xn ≤ 1. These two faces shall be designated
ΓW (west) and ΓE (east) respectively, see the following diagram for the case n = 2:
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east boundary ΓE

(0,0)

(1,1)(0,1)

(1,0)

Ω = (0, 1)2

west boundary ΓW

The choices of the Dirichlet boundary edges are completely arbitrary and the symmetry of the domain
permits immediate transfer of any results to the respective boundary value problems with ΓN (north)
and ΓS (south) boundaries. This argument obviously also applies to higher dimensions n > 2.
We can infer from Section 1.2.2 that the trace operators

γW : H1(Ω)→ H1/2(ΓW), v 7→ v|ΓW := v(0, x2, . . . , xn), (3.2.22)
γE : H1(Ω)→ H1/2(ΓE), v 7→ v|ΓE := v(1, x2, . . . , xn), (3.2.23)

are well-defined. In the following, we fix one operator and refer to it with the symbol γB ∈ {γE , γW }.
The Dirichlet boundary Γ ∈ {ΓE,ΓW} shall be uniquely determined by this operator.

The `2-Problem

We now employ the wavelet theory from Section 2 and Section 3.1.2 for our problem. We have
constructed wavelet bases ΨII , Ψ̃II in Section 2.3.2 which allow for norm equivalences for the Sobolev
spaces ranging from H1(Γ)′ to H1(Γ) using the scaled wavelet bases Ψ1

Γ = D−1ΨII , Ψ̃1
Γ = D+1Ψ̃II . The

wavelet bases Ψ1
Ω := D−1

Ω ΨII
Ω,Ψ̃1

Ω := D+1
Ω Ψ̃II

Ω for the domain Ω are obtained by taking tensor products as
introduced in Section 2.4, i.e.,

ΨII
Ω :=

n⊗
i=1

ΨII , Ψ̃II
Ω :=

n⊗
i=1

Ψ̃II . (3.2.24)

In case n > 2 the domain Γ will be constructed by n− 1 tensor products of the interval I so that we set

ΨII
Γ :=

n⊗
i=2

ΨII , Ψ̃II
Γ :=

n⊗
i=2

Ψ̃II . (3.2.25)

We now present the explicit construction of the linear operator L of (3.1.26) for our problem. Afterwards,
we show that the conditions of Theorem 3.4 are satisfied and therefore an exact solution for our problem
exists.
Let a(·, ·) be the symmetric continuous elliptic bilinear form of Section 1.3.2 given by (3.2.4). Recall
the discretized operator A is called stiffness matrix and is given by

A = 〈Ψ1
Ω, AΨ1

Ω〉 = D−1
Ω 〈Ψ

II
Ω, AΨII

Ω〉D−1
Ω = D−1

Ω (a(ψ,ψ′))ψ,ψ′∈ΨII
Ω
D−1

Ω . (3.2.26)

The trace operator B in wavelet coordinates is constructed similarly. The bilinear form b(·, ·) was intro-
duced in (3.2.8) and the infinite dimensional operator B is, thus,

〈q̃, Bv〉 := b(q̃, v) =
∫

Γ

γB v · q̃ ds . (3.2.27)

The most important detail here is the need for the dual basis Ψ̃II
Γ since q̃ ∈ (H1/2(Γ))

′
. The wavelet

discretized operator B now has the form

B = 〈Ψ̃1/2
Γ , BΨ1

Ω〉 = D1/2
Γ 〈Ψ̃

II
Γ , BΨII

Ω〉D−1
Ω . (3.2.28)
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The tensor product structure can now be used to further simplify the representation of (3.2.28). Since
the trace operator is nothing else than the restriction to a lower dimension along the cartesian product
axes, we have

γB ΨII
Ω =

(
γB ΨII

)
⊗

n⊗
i=2

ΨII , (3.2.29)

or in detail for any wavelet ψΩ,(j,k) ∈ ΨII
Ω

γB ψΩ,(j,k)(x) = γB (ψj1,k1(x1) · · ·ψjn,kn(xn))
= (γB ψj1,k1(x1)) · ψj2,k2(x2) · · ·ψjn,kn(xn)
= ψj1,k1(x1)|Γ · ψj2,k2(x2) · · ·ψjn,kn(xn)

=
{
ψj1,k1(0)
ψj1,k1(1)

}
ψj2,k2(x2) · · ·ψjn,kn

(xn),
{

if Γ = ΓW

if Γ = ΓE
. (3.2.30)

Proposition 3.18 The trace operator in wavelet coordinates is given by

B =
(
ψj1,k1 |Γ · δ(g2,...,gn , j2,...,jn) · δ(k2,...,kn , l2,...,ln)

)
(g,l),(j,k)

(3.2.31)

It is uniformly sparse and thus applicable in linear time.

Proof: We can combine (3.2.30) with (3.2.28) and (3.2.27) to calculate the value at any position in the
matrix B as

〈ψ̃Γ,(g,l), BψΩ,(j,k)〉 = 〈ψ̃Γ,(g2,...,gn;l2,...,ln)(x2, . . . , xn), BψΩ,(j1,...,jn;k1,...,kn)(x1, . . . , xn)〉

=
∫

Γ

ψj1,k1 |Γ · ψ̃g2,...,gn;l2,...,ln(x2, . . . , xn) · ψj2,...,jn;k2,...,kn(x2, . . . , xn) ds

= ψj1,k1 |Γ · δ(g2,...,gn , j2,...,jn) · δ(k2,...,kn , l2,...,ln)

∫
Γ

ds,

where we used biorthogonality (B)(2.1.52) on Γ for the last step. The assertion follows because the
measure of the boundary Γ is exactly 1. Thus, we have eliminated the need for an explicit representation
of the dual wavelets in this construction.

We can conclude straightforward from (3.2.31) that the structure of the trace operator is very similar
for any choice of γB ∈ {γW , γE}. Indeed, the columns of either one discretized trace operator are just
permutated when compared to the other.

Stability Remarks – Stiffness Matrix

We now consider the finite-dimensional problem 3.7 with respect to the wavelet spaces created by
Ψ(Ω,σ) ⊂ ΨII

Ω, Ψ(Γ,π) ⊂ ΨII
Γ with the index sets IIΩ,σ ⊂ IIΩ, IIΓ,π ⊂ IIΓ exactly as in Section 3.1.3.

Recall that if the bilinear form a(·, ·) of (3.2.4) is elliptic and continuous, then the Galerkin scheme is
(s,−s)-stable from Section 2.2.5. The finite-dimensional discretized operator Aσ of (3.2.26) is then given
by

Aσ = 〈Ψ1
(Ω,σ), AΨ1

(Ω,σ)〉 = D−1
σ 〈ΨII

(Ω,σ), AΨII
(Ω,σ)〉D

−1
σ . (3.2.32)

Remark 3.19 Numerical studies [52] show that the condition number of the finite discretized differen-
tial operators Aσ preconditioned by the application of D−1

1,σ of (2.2.14) is indeed uniformly bounded.
Its absolute value can be further reduced by computing the diagonal entries of the unscaled matrix
〈ΨII

(Ω,σ), AΨII
(Ω,σ)〉,

Da := (a(ψj,k, ψj,k))(j,k)∈IIΩ , (3.2.33)

and using the matrix with entries

D−s
a,σ :=

(
((Da)j)

−s/2
δ(j,j′)δ(k,k′)

)
(j,k)∈IIΩ,σ,(j′,k′)∈IIΩ,σ

(3.2.34)

as the preconditioning operator in (3.2.32). This operator D−s
a,σ can be understood to precondition Aσ in

the energy norm ‖ · ‖2A = a(·, ·) which explains its effectiveness shown later.
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Stability Remarks – Trace Operator

The LBB-condition (3.1.39) is satisfied because the prerequisites of Corollary 3.10 hold. A more
direct proof of the validity of the LBB-condition is based on the Trace Theorems from Section 1.2.2 and
Theorem 3.11:

Corollary 3.20 The bilinear form b(·, ·) on H1(Ω) × (H1/2(Γ))
′
satisfies the inf-sup condition with

the constants from (1.2.28) and (1.2.26)

inf
q̃∈(H1/2(Γ))′

sup
v∈H1(Ω)

b(v, q̃)
‖v‖H1(Ω)‖q̃‖(H1/2(Γ))′

≥ 1
CT,Ω CE,∂Ω

. (3.2.35)

Remark 3.21 This result was proved in [46] in the fictitious domain setting Ω ⊂ � from Section 3.2.1.
In that case another constant appears in (3.2.35), which arises from the need to give an upper estimate
for the extension ‖ũ‖Hs(�) by ‖u‖Hs(Ω).

The LBB-condition could also be inferred by this corollary and Theorem 3.11. The required linear
projector Πσ : H1(Ω)→ Xσ = S(Ψ(Ω,σ)) is naturally given by the L2-Projector (2.1.44), e.g. Πσ := Pσ.
Condition (3.1.40) can then be achieved through biorthogonality (2.1.42).

Numerical Details

Since all our discretized operators are stable, we ascertain from Theorem 3.4 a unique solution
(yσ, pπ)T ∈ H1(Ω) × (H1/2(Γ))

′
. Furthermore, this implies convergence towards the exact solution, i.e.,

(yσ, pπ)T → (y, p)T with σ, π →∞ (cf. (3.1.42) and (3.1.43)).
As mentioned before, the setup of the problem (3.2.21) permits asymptotically optimal preconditioning
and the use of fast iterative solvers, see Section 3.3 for implementations. These solvers only need a fixed
number of iterations to reduce the residual error by a constant fraction. In every iteration, though, an
application of the whole system matrix LJH is needed. Other operations (scalar product, simple floating
point operations) are negligible when compared to the amount of work necessary for computing the
product LJHuJH .
It was shown in Section 3.1.4 how the system matrix can be assembled by using the wavelet transform
applied onto the operators in single-scale basis. Because the single-scale operator AΦσ

, BΦσ,Φπ
are

uniformly sparse, the operator LΦ,JH (3.1.52) can be applied in O(#IIH,JH) floating point operations.
Since this is also true for the wavelet transform (3.1.49) and the diagonal matrices (3.1.50), the whole
operator LJH can be applied in linear time.
This fact is crucial because this means the above mentioned solvers only need linear time O(#IIH,JH) to
reduce the residual error to a fixed fraction of its value.
Also, we can conclude for uniform refinements from Section 2.2.4 together with (2.2.29) and y ∈ H2 the
rate

inf
vσ∈S(Ψ1

(Ω,σ))
‖y − vσ‖H1 . 2−σ‖y‖H2 . (3.2.36)

Therefore the (residual) error rate we should be able to achieve is 2−σ, which is equivalent to a factor
of 1/2 per level and thus possible in linear time. The algorithm details will be covered in the next section.
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3.3 Algorithms

We now discuss the iterative algorithms used for solving the saddle point problems in Section 3.2. The
task is to solve the matrix-vector equation

LJH

(
yσ
pπ

)
:=
(

Aσ BT
σ,π

Bσ,π 0

)(
yσ
pπ

)
=
(

fσ
uπ

)
(3.3.1)

in wavelet coordinates on level σ, π ≥ j0, where we have κ2(LJH) ∼ 1. Let NJH be the total number
of unknowns in the above equation. The matrix LJH here is indefinite, meaning it has positive and
negative eigenvalues. Equation (3.3.1) can be solved using common iteration methods like the CG Solver
for the normal equations of (3.3.1), see Section 3.3.1, or Uzawa type algorithms, see Section 3.3.2. The
common goal of these algorithms is to produce an element (yδ,pδ)T ∈ `2(IIX,σ × IIQ,π) for which holds∥∥∥∥LJH( yδ

pδ

)
−
(

fσ
uπ

)∥∥∥∥
`2

< δ . (3.3.2)

The right choice of the initial starting vector x(0) can significantly improve the total time the solver needs
to calculate a solution up to discretization error accuracy. The simplest starting vector is obviously given
by using the vector of only zeros (0) as the initial solution on any level. This is known as common
iteration. The number of floating point operations necessary to solve (3.3.1) here is

O(NJH logNJH), (3.3.3)

see, for example, [60]. Although feasible, a more sophisticated approach than common iteration is given
by the nested iteration scheme. This can be described as a meta-algorithm acting with the algorithms
used to actually solve the system of linear equations. It originates from the fact that the trial spaces are
nested (cf. (R)(2.1.6)) and thus prolongation resp. restriction operators exists which can transfer an
element in the space Sj to level j + 1, resp., j − 1. Hence a calculated solution xj is transferred to the
next level j + 1 and used as the starting vector of that level’s solver.

Remark 3.22 In a wavelet framework, we have the space decomposition identity (2.1.12). It can be
directly deduced that prolongation and restriction operators merely add or delete entries at the end
of a vector, or, in the cartesian product setting, also at certain positions inside the vectors. These are
obviously extremely easy to implement and involve no floating point operations.

Algorithm 3.23 NI
[
j0, J, {Algj}j=j0,...,J

]
→ xJ

(i) Set j := j0

x(0)
j := 0

(ii) Repeat

Solve Ajx = bj using algorithm Algj with initial solution x(0)
j

obtaining the solution x(kj)
j up to discretization error

accuracy after kj iterations.

Prolongate x(kj)
j :

x(0)
j+1 := x(kj)

j ∈ IRNj+1

by inserting zeros.
Update

j ← j + 1
Until j > J

(iii) Return x(kJ )
J
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The number of unknowns on the coarsest level j0 is usually small, depending on the construction. For
the wavelets of Section 2.3.2 holds #∆j0 = 9. Thus, a direct solver like the QR-decomposition can be
used on level j = j0. In this way, a very accurate starting vector x(0)

j0+1 is constructed. Since any solution

x(kj)
j is of discretization error precision, so is the prolongated vector x(0)

j+1. The solver thus needs only
to improve the quality of the solution by a constant factor on each level. This leads to the following
important result.

Theorem 3.24 The nested iteration algorithm computes the solution on the finest level J with a com-
plexity of O(NJ) floating point operations.

Proof: Optimal preconditioning makes it possible to achieve a reduction of the error by a constant
factor only requiring a constant number of iteration steps independent of the level. Each step is executed
with O(Nj) operations. Combined with a geometric series argument over the number of unknowns Nj
(cf. Proposition 2.11),

O(
J∑

j=j0

Nj) = O(NJ),

proves the claim.

Next, we present two classes of iterative solvers which can be used to solve (3.3.1).
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3.3.1 Conjugate Gradient Solver

The Conjugate Gradient (CG) Solver is the most well-known algorithm used for solving a system of
linear equations with a symmetric positive definite system matrix iteratively. We list this algorithm for
completeness.

Algorithm 3.25 CG
[
δ,A,x(0),b

]
→ xδ

(i) Set k := 0
r(0) := Ax(0) − b
d(1) := −r(0)

q(1) := 0
γ(0) :=

〈
r(0), r(0)

〉
(ii) While ‖rk‖`2 > δ

k ← k + 1
q(k) ← Ad(k)

α(k) ← γ(k−1)/
〈
d(k),q(k)

〉
x(k) ← x(k−1) + α(k)d(k)

r(k) ← r(k−1) + α(k)q(k)

γ(k) ←
〈
r(k), r(k)

〉
β(k) ← γ(k)/γ(k−1)

d(k) ← −r(k) + β(k)d(k−1)

(iii) Return x(k)

The CG scheme is known to be optimal in the sense that it calculates the solution with the amount of
steps equal to the number of unknowns if all calculations were done with infinite precision. Solving a
linear equation stemming from a discretization of finite precision, one cannot expect an infinitely precise
solution. Rather, we solve the equation up to discretization error accuracy. This can obviously be done in
fewer steps than the number of unknowns even though computers only calculate with machine precision
and introduce a rounding error in every calculation.
The convergence speed of the above algorithm determines the number of steps necessary to reduce the
residual error ‖Ax(k) − b‖`2 up to the discretization error. Let x∗ be the exact solution. Then the error
‖x∗ − x(k)‖A in energy norm decreases by a factor of√

κ2(A)− 1√
κ2(A) + 1

< 1 (3.3.4)

in every step, where κ2(·) is the spectral condition. Having optimally preconditioned operators is thus
vital of calculating the solution efficiently since then

‖x∗ − x(k)‖A ∼ ‖Ax(k) − b‖`2 = ‖r(k)‖`2 ∼ ‖x∗ − x(k)‖`2 ,

where the constant for each of the upper equivalences is ‖A‖ and the constant of the lower ones is
‖A−1‖−1. This means that the quality (cf. (2.2.37)) of the equivalences is determined by κ2(A) =
‖A‖‖A−1‖. In practice, the residual does not fall strictly with the value of (3.3.4) in every step.
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3.3.2 Uzawa Algorithms

The details of this section are borrowed from [8]. Uzawa algorithm are iterative solvers for saddle point
problems. These algorithms generally have a lower complexity than CG applied to the normalized
equation LTLx = LTb. Conceptually, it can be written as

Ay(k) = f −BTp(k−1),
p(k) = p(k−1) + α(By(k) − u),

}
k = 1, 2, . . . . (3.3.5)

The stepping parameter α has to be small enough to ensure convergence depending on the spectral
properties of A and B. Since it also determines the convergence speed, α must be chosen as large as
possible in applications. It is known (see [21]) that the upper bound for α is given by the norm of the
Schur complement (3.2.15) as

α <
2

‖BA−1BT ‖
. (3.3.6)

Assuming the vector y(k) is calculated analytically yields the representation for the residual error

‖Lx(k) − b‖`2 = ‖By(k) − u‖`2 =: ‖q(k)‖`2 (3.3.7)

in every step.

Uzawa Algorithm

The standard Uzawa algorithm uses the formula

α(k) =

〈
q(k),q(k)

〉〈
q(k), (BA−1 BT )q(k)

〉 (3.3.8)

to calculate the stepping parameter in every iterations. The inversion of the matrix A is done here using
the CG solver and is thus only executed approximatively. For equation (3.3.7) to hold, this inner iteration
must obviously be carried out with smaller tolerance than the outer iteration.

Algorithm 3.26 Uzawa
[
δ, {δi}i=0,...,L,

(y(0)

p(0)

)
,
(
f
u

)]
→
(
yδ

pδ

)
(i) Set k := 0

Update y(1) ← CG
[
δ0,A,y(0), f −BT p(0)

]
Set h(1) := 0

j(1) := 0
q(1) := 0

(ii) Repeat
k ← k + 1
q(k) ← u−By(k)

j(k) ← BT q(k)

h(k) ← CG
[
δk,A,h(k−1), j(k)

]
α(k) ←

〈
q(k),q(k)

〉
/
〈
j(k),h(k)

〉
p(k) ← p(k−1) − α(k) q(k)

y(k+1) ← y(k) − α(k) h(k)

Until ‖q(k)‖`2 ≤ δ

(iii) Return
(
y(k),p(k)

)T

The convergence rate of this algorithm is determined by the spectral condition of the Schur complement,

θUzawa :=

√
κ2(BA−1BT )− 1√
κ2(BA−1BT ) + 1

< 1 . (3.3.9)
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Consequently, if the Schur complement has a uniformly bounded condition number, then only a fixed
number of iterations is needed to reduce the error by a fixed fraction.
Since the spectral condition of the Schur complement is generally large, it can be very good for perfor-
mance to introduce conjugate directions for the outer iteration as well.

Uzawa Algorithm with Conjugate Directions

The following version, also taken from [8], uses slightly more memory in the form of one additional vector
d(k). The benefits of increases in speed can outweight the drawback of higher memory usage.

Algorithm 3.27 UzawaCD
[
δ, {δi}i=0,...,L,

(y(0)

p(0)

)
,
(
f
u

)]
→
(
yδ

pδ

)
(i) Set k := 0

Update y(1) ← CG
[
δ0,A,y(0), f −BT p(0)

]
Set d(1) := By(1) − u

h(1) := 0
j(1) := 0
q(1) := −d(1)

(ii) Repeat
k ← k + 1
j(k) ← BT d(k)

h(k) ← CG
[
δk,A,h(k−1), j(k)

]
α(k) ←

〈
q(k),q(k)

〉
/
〈
j(k),q(k)

〉
p(k) ← p(k−1) − α(k) d(k)

y(k+1) ← y(k) − α(k) h(k)

q(k+1) ← u−By(k+1)

β(k) ←
〈
q(k+1),q(k+1)

〉
/
〈
q(k),q(k)

〉
d(k+1) ← −q(k+1) + β(k) d(k)

Until ‖q(k+1)‖`2 ≤ δ

(iii) Return
(
y(k+1),p(k)

)T

The error bounds δi for the inner matrix inversion are chosen smaller than δ, ususally by a fixed factor
like 1/4 or 1/8 for all δi.
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4 Control Problems

Control theory in the sense used here is concerned with the optimization of some given objective function
under a constraint. First we will need to discuss existence and uniqueness of the minimizing element.
After this is done, theory of calculus of variations is employed to deduce the necessary and sufficient
conditions to characterize the optimum.
Here, the functional to be minimized will act as an indicator of smoothness and regularity for elements
of function spaces. The constraints can generally be any correlation between the functions on which the
functional depends. Correlations stated by a partial differential equation, be it the elliptic, parabolic or
hyperbolic case, hereby pose a particular challenge for numerics.
One of the first works on this topic was by J. L. Lions [49] in 1970, where a complete overview of the
subject was literally put down for the first time. The article [40] of W. Hackbusch in 1980 can be seen
as the predecessor to this work because of its emphasis on fast numerical solutions to elliptic control
problems. In that work, multigrid methods were used to solve the elliptic partial differential equations
of the resulting optimality conditions. The advances of the wavelet construction process during the last
18 years described in Section 2 and their successful application to elliptic partial differential equations
allow for employing wavelet techniques for such problems today.
Wavelet approaches to optimal control problems can be found in [46] and [47]. This thesis will complement
these papers as it will present numerical results of an important practical example problem on this topic.
The algorithms proposed there are proved to work in an application. We also extend the wavelet theory
a bit further by rigorously incorporating Riesz operators into the wavelet discretization.

4.1 Introduction

This section gives a brief definition to control problems, providing the most important vocabulary re-
garding this matter. After the general introduction to control problems with elliptic PDEs follows the
specific control problem which is assembled, solved and examined in this thesis.
The general control problem refers to the following setting (see [49]):
Given the following ingredients:

• Controls u belonging to some space Uad consisting of all admissible controls;

• The state y(u) of the system to be controlled is given as the solution of a stationary partial
differential equation

A y(u) = f(u) (4.1.1)

with a given right hand side f and an operator A called the model of the system;

• The observation z(u), which is a function of y(u);

• The cost functional J (u) = Φ(z(u)) defined in terms of the observation as a function
z 7→ Φ(z) ≥ 0.

The task is to find the function u ∈ Uad which minimizes the cost functional

inf
u∈Uad

J (u). (4.1.2)

A control u ∈ Uad is termed optimal control, with respect to inf J (u) if it is the infimum of the
functional.

Remark 4.1 Problems in optimal control arise in a number of scientific fields, ranging from biology to
physics and economics, see the books [7,43] for a vast number of diverse examples.

Depending on the exact form of the functional, there can be either none, exactly one, several or infinitely
many optimal controls. Certainly one must identify which situation applies before attempting to apply
numeric schemes. Assuming the existence of one unique optimum, it must be characterized in order to
be determined. Usually the equations expressing the minimizing element cannot be solved analytically
so that numerical methods need to be employed. Discretizations naturally only work on finite subspaces
of the spaces in which the control u and the state y exist, so convergence to the solution of the control
problem on infinite spaces must be proved. One of the objectives in this setting is to construct algorithms
which yield the best approximations to u and y with as little computational work as necessary.
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Section 4. Control Problems

4.2 Linear-Quadratic Control Problems Governed by Elliptic PDEs

This chapter is mostly based on [46] and [47]. Quotations are marked and proofs only given if they differ
in details from the sources or if it is helpful for understanding of the overall picture.
Let Ω ⊆ � ⊂ IRn be a domain bounded with a Lipschitz continuous boundary ∂Ω ∈ C0,1. The spaces
X,Q and Y are to be Hilbert spaces.
The general type of problem that we are going to discuss here is termed linear-quadratic elliptic
control problem, because a quadratic functional is minimized under the constrains of a linear elliptic
partial differential equation:

Problem 4.2 [Control Problem with Elliptic PDE Constraints]
Let functions f ,y∗ and a parameter ω > 0 be given. Minimize the cost functional

J (y, u) =
1
2
‖y − y∗‖2Y +

ω

2
‖u‖2Q, (4.2.1)

where the state y and the control u are coupled by the elliptic problem (the model)

L y = f(u), in Ω . (4.2.2)

Here the operator L is a partial differential operator of elliptic type of order 2m (cf.(1.3.2)). The smooth-
ness we can expect for the state is thus y ∈ Hm(Ω).
The functional (4.2.1) consists of two quadratical terms, which serve completely different purposes. The
first term is called data fitting term, since it forces y to approximate to the observation y∗ in the
space Y . The second term is entitled regularization term, because it enforces regularity of the control.
The parameter ω > 0 weights the importance of the two terms.

Remark 4.3 It should be noted that our problem 4.2 is only well defined when ω > 0. For ω → 0 the
problem becomes ill-defined and (as we shall see) harder to solve. In case ω = 0 the solution state is
determined by the right hand side functions f, y∗ alone. In general, the control may not be unique in this
case, but rather an element of a subspace U ⊂ Uad, see [39].

The observation y∗ can either be given on any part of the domain Ω or on its boundary ∂Ω. This means
the space Y could either be a Sobolev space on a yet to be specified part of the boundary ∂Ω or the whole
domain Ω. The same holds true for the space Q. The control could either be exerted on the domain Ω or
on a patch of the boundary Γ ⊂ ∂Ω. The former setup of distributed control is investigated in [11,12].
Here we focus on the latter problem of the practically most improtant boundary control.
The above mentioned regularity of y implicates that we have y|∂Ω ∈ Hm−1/2(∂Ω). This entails that the
natural norms in (4.2.1) are fractional Sobolev spaces’ norms on the boundary of Ω. So we will have
to deal with norms of spaces, that are not only difficult to evaluate but not even uniquely defined, see
Section 1.2.
The target is thus not so much to compute the exact quantity of the optimization functional but to
control the qualitative behavior of the minimization. We will formulate the control problem in a wavelet
setting, which uses norms that are equivalent to the natural norms of (4.2.1).

4.2.1 Dirichlet Problems with Boundary Control

To formalize the above remarks, we choose our partial differential constraints (4.2.2) to be the boundary
value problem 3.14. The space Q is now a function space on the border patch Γ ⊂ ∂Ω and Y a space
on ΓY ⊂ ∂Ω.
The elliptic boundary value problem will be used in the operator formulation (3.2.14). Recall that the
elliptic operator A : X → X ′ and the trace operator B : X → Q are well-defined, possibly in a fictitious
domain setting (see Section 3.2.1), and Theorem 3.4 holds.
The analytical norms in (4.2.1) will now be replaced by equivalent norms from wavelet theory (see
Theorem 2.17):

‖ · ‖2Y := (·, ·)Y ∼ ‖ · ‖
2
Y , ‖ · ‖2Q := (·, ·)Q ∼ ‖ · ‖

2
Q . (4.2.3)

Furthermore, let
T : X → Y (4.2.4)

be the linear continuous trace operator, which maps the space X on Ω onto Y living on ΓY .
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Problem 4.4 [Control Problem with Boundary Control]
Given f ∈ X ′, y∗ ∈ Y , find (y, p, u) ∈ X ×Q′ ×Q, such that

J (y, u) =
1
2
‖Ty − y∗‖2Y +

ω

2
‖u‖2Q (4.2.5)

is minimized subject to

L

(
y
p

)
:=
(
A B′

B 0

)(
y
p

)
=
(
f
u

)
. (4.2.6)

The space of admissible controls in this problem is taken as Uad := Q. This problem will now be solved
by the Lagrangian multiplier method. Recall that DsJ (u; v1, . . . , vn) is the s− th variation of J at
u in directions v1, . . . , vn and for s = 1 the derivative at u in direction v is defined as

DJ (u; v) = 〈δJ (u), v〉 := lim
t→0

J (u+ tv)− J (u)
t

. (4.2.7)

In order to give necessary and sufficient criteria for a minimum of the functional (4.2.5), we append the
boundary value problem (4.2.6) to the functional and define

Lagr(y, p, u, z, µ) :=
1
2
‖Ty − y∗‖2Y +

ω

2
‖u‖2Q +

〈(
z
µ

)
, L

(
y
p

)
−
(
f
u

)〉
(4.2.8)

on X ×Q′ ×Q×X ×Q′.
The connection between this Lagrangian functional and Problem 4.4 is established by a theorem from [46]:

Theorem 4.5 Suppose that the following two conditions hold:

(i) J : X ×Q′ ×Q→ IR is differentiable at x∗ ∈ X ×Q′ ×Q,

(ii) G(y, p, u) := L

(
y
p

)
−
(
f
u

)
: X ×Q′ ×Q→ X ′ ×Q is a submersion (see [62]) at x∗, i.e.,

G is a smooth map and its Jacobian is surjective at every x ∈ X ×Q′ ×Q.

Then, if J has a local minimum at x∗ with respect to the solution space

K := {(y, p, u) ∈ X ×Q′ ×Q | G(y, p, u) = 0}, (4.2.9)

then Lagr satisfies the necessary conditions

δLagr(x∗) = 0 . (4.2.10)

If J is strongly convex, then (4.2.10) is also sufficient for the unique minimum of Problem 4.4 to be
attained at x∗.

Before investigating the implications of this theorem, we reformulate the functional (4.2.5) using identity
(3.2.19), for which we now assume the operator A to be invertible,

J (u) = J (y(u)) =
1
2
‖TA−1(B̃′u+ f̃)− y∗‖2Y +

ω

2
‖u‖2Q . (4.2.11)

Proposition 4.6 The functional (4.2.11) is twice differentiable on Q with derivatives

DJ (u; v) =
(
Ty(u)− y∗, TA−1B̃′v

)
Y

+ ω (u, v)Q

=
(
TA−1(B̃′u+ f̃)− y∗, TA−1B̃′v

)
Y

+ ω (u, v)Q (4.2.12)

for all v ∈ Q and
D2J (u; v, w) =

(
TA−1B̃′v, TA−1B̃′w

)
Y

+ ω (v, w)Q (4.2.13)

for all v, w ∈ Q. In particular, J is strictly convex on Q for ω 6= 0, e.g.

D2J (u; v, v) > 0, for all v ∈ Q \ {0} . (4.2.14)
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Proof: The proof is adapted from [46]. For any u, v ∈ Q and t > 0, one has for J from (4.2.11):

J (u+ tv)− J (u)
t

=
1
2

(
2
(
Ty(u)− y∗, TA−1B̃′v

)
Y

+ t ‖TA−1B̃′v‖2Q
)

+
ω

2

(
2(u, v)Q + t ‖v‖2Q

)
,

yielding

DJ (u; v) = lim
t→0

J (u+ tv)− J (u)
t

=
(
Ty(u)− y∗, TA−1B̃′v

)
Y

+ ω (u, v)Q

and, thus, (4.2.12) upon inserting (4.2.11). Furthermore, let Ĵ (u; v) := 〈δJ (u), v〉. Then

Ĵ (u+ tw; v)− Ĵ (u; v)
t

=
(
TA−1B̃′v, TA−1B̃′w

)
Y

+ ω(v, w)Q

is independent of u, yielding identity (4.2.13) for all v, w ∈ Q. In particular, one has

D2J (u; v, v) = ‖TA−1B̃′v‖2Y + ω‖v‖2Q ≥ ω‖v‖2Q > 0

for all nonzero v ∈ Q and ω 6= 0 (cf. Remark 4.3).

Let us introduce Riesz maps (cf. (2.2.38)) RY : Y → Y ′, RQ : Q→ Q′ defined by

〈RYv, w〉 := 〈RYv, w〉Y×Y ′ := (v, w)Y, for all v, w ∈ Y , (4.2.15)
〈RQv, w〉 := 〈RQv, w〉Q×Q′ := (v, w)Q, for all v, w ∈ Q . (4.2.16)

The norms in the Lagrangian functional (4.2.8) can be represented by using these operators as

Lagr(y, p, u, z, µ) =
1
2
〈RY(Ty − y∗), T y − y∗〉+

ω

2
〈RQu, u〉+

〈(
z
µ

)
, L

(
y
p

)
−
(
f
u

)〉
. (4.2.17)

The first prerequisite of Theorem 4.5 is obviously guaranteed by Proposition 4.6. To check that G is a
submersion, we need to analyze its Jacobian. This is the matrix(

L
0
−I

)
=
(
A B′ 0
B 0 −I

)
∈ L(X ×Q′ ×Q;X ′ ×Q) . (4.2.18)

Since we have assured by the formulation of the PDE as a saddle point problem the applicability of
Theorem 3.4, we have that L is invertible and, concordantly, this mapping is surjective.

Lemma 4.7 Let J be the functional in (4.2.11), let f ∈ X ′ and y∗ ∈ Y be given. Then the Euler
equations resulting from (4.2.10) for the minimization problem Problem 4.4 are

Ay +B′p− f = 0,
By − u = 0 .

ωRQu− µ = 0, (4.2.19)
T ′RYTy − T ′RYy∗ +A′z +B′µ = 0,

Bz = 0,

Proof: According to Theorem 4.5, we need to determine the Euler equations (4.2.10),

δLagr(y, p, u, z, µ; r) = 0 for r = y, p, u, z, µ . (4.2.20)

Each one of these conditions yields one of the above equations. Since we have shown in Proposition 4.6
that J is convex, other sufficient conditions need not be taken into account.

The system of equations (4.2.19) are equivalent to the following linear system

NU :=
(
L E

Ê L′

)
y
p
z
µ



:=


A B′ 0 0
B 0 0 −ω−1R−1

Q

T ′RYT 0 A′ B′

0 0 B 0



y
p
z
µ

 =


f
0

T ′RYy∗
0

 =: F (4.2.21)
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by using the third equation to eliminate u = ω−1R−1
Q µ in the last equation.

Remark 4.8 Note that (4.2.21) can be interpreted as solving simultaneously two systems of saddle point
problems, namely, the primal system (4.2.6),

L

(
y
p

)
=
(
A B′

B 0

)(
y
p

)
=
(
f
u

)
, (4.2.22)

and the adjoint system

L′
(
z
µ

)
=
(
A′ B′

B 0

)(
z
µ

)
=
(
−T ′RY(Ty − y∗)

0

)
(4.2.23)

for (z, µ) ∈ X × Q′. The variable z is called adjoint state variable. The central third equation in
(4.2.19), establishing the coupling between the primal and the adjoint system, is called design equation.

If the adjoint system is solved analytically or numerically using a direct solver, one obtains an explicit
expression for the control u in terms of the state y, which involves the Schur complement and the inverse
of A. Of course, this scheme has the disadvantage of being too costly in numerical applications because
of the properties of the Schur complement (see (3.2.15)). The above formulation (4.2.21) circumvents
these drawbacks because A−1 does not need to be computed explicitly here. The following proposition
shows an important property of this primal/adjoint system characterization.

Proposition 4.9 We can infer from Proposition 4.6 directly that the first variation of J is given by

δJ (u) = B̃(A−1)
′
T ′RY(Ty − y∗) + ωRQu . (4.2.24)

An equivalent representation is
δJ (u) = ωRQu− µ, (4.2.25)

that is, the evaluation of δJ (u) is equivalent to solving first (4.2.22), followed by (4.2.23).

Proof: The variable µ in (4.2.23) has by (3.2.18) the explicit form

µ = −S−1BA−1 (T ′RY(Ty − y∗)) ,

from which (4.2.25) by (4.2.24) follows directly with B̃ = S−1B and the self-adjointness of A.

The next corollary establishes the operator N from (4.2.21) as an isomorphism, which, combined
with stable wavelet discretizations, leads to an optimal preconditioned `2-operator in the next section.

Corollary 4.10 Let A and B fulfill the prerequisites of Theorem 3.4. Then N is an isomorphism

N : N −→ N ′, with N := X ×Q′ ×X ×Q′, (4.2.26)

satisfying the norm equivalence

‖V ‖N ∼ ‖NV ‖N ′ for any V ∈ N . (4.2.27)

Proof: The invertibility of N follows from Theorem 4.5 and Proposition 4.6 since G is, under the
conditions on A and B, a submersion. One now has to check the lower and upper estimates of (4.2.27).
We have for V = (y, p, z, µ) ∈ N by definition of the norm

‖NV ‖2N ′ =

∥∥∥∥∥
(
L
(
y
p

)
+ E

(
z
µ

)
Ê
(
y
p

)
+ L′

(
z
µ

))∥∥∥∥∥
2

N ′

=

∥∥∥∥∥
(
L
(
y
p

)
+
(

0
−ω−1R−1

Q µ

)
T ′RYT

(
y
0

)
+ L′

(
z
µ

))∥∥∥∥∥
2

N ′

.

∥∥∥∥L( yp
)∥∥∥∥2

X′×Q
+ ‖ω−1R−1

Q µ‖2Q +
∥∥∥∥L′( zµ

)∥∥∥∥2

X′×Q
+ ‖T ′RYTy‖2X′ . (4.2.28)

The last term can now be estimated by the Trace Theorem 1.20 and the spectral boundedness of RY

(2.2.39) as
‖T ′RYTy‖X′ . cT,Ω CT,Ω ‖y‖X . (4.2.29)
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Combining (4.2.29) and (4.2.28) yields

‖NV ‖2N ′ .

∥∥∥∥L( yp
)∥∥∥∥2

X′×Q
+ ‖ω−1R−1

Q µ‖2Q +
∥∥∥∥L′( zµ

)∥∥∥∥2

X′×Q
+ ‖y‖2X .

Lastly, using the norm equivalence (3.1.21) for L = L′ and (2.2.39) for RQ, one obtains

‖NV ‖2N ′ . ‖V ‖2N + ω−1‖µ‖2Q′ + ‖y‖2X . ‖V ‖2N
Since N is linear, continuous and invertible on a product of Hilbert spaces, the inverse mapping
theorem (see [3]) proves that the inverse mapping N−1 exists and is also linear and continuous, i.e., the
estimate

‖V ‖2N . ‖NV ‖2N ′
holds.

Thus, we have two problem formulations which consist only of linear isomorphism between Hilbert
spaces. The next step is now to create a wavelet representation N of the isomorphism N .

4.2.2 Reformulation as a Problem in `2

Let now be biorthogonal wavelet bases with the properties of Section 2 for the spaces X, Q and Y and
their duals are at our disposal. We fix the involved spaces as

X = H1(Ω), Y = H1/2(ΓY ), Q = H1/2(Γ) . (4.2.30)

The primal wavelet bases will be indexed accordingly by Ψ1
Ω, Ψ1/2

ΓY
and Ψ1/2

Γ with the dual bases as
introduced in Section 3.1.2. Obviously, the Riesz basis property (Definition 2.1) and the norm equivalences
(2.2.12), (2.2.13) hold for the required ranges, for example, the norm equivalence for the Sobolev range
[−1, 1] on the domain Ω is assured. Of course, we associate the wavelet bases with the usual infinite index
sets IIX , IIY , IIQ. The wavelet basis for the product space N of (4.2.26) is the external product of the
involved wavelet bases, i.e.,

ΨN :=
(
Ψ1

Ω, Ψ̃
1/2
Γ ,Ψ1

Ω, Ψ̃
1/2
Γ

)T
, IIN := IIX × IIQ × IIX × IIQ . (4.2.31)

Instead of just discretizing N from (4.2.21), we stress that the present wavelet framework allows for a
much more natural approach by formulating the functional (4.2.5) in terms of discrete `2 norms. These
discrete norms must be equivalent to the norms involved in the functional J . This means for any
v = vTΨ1/2

ΓY
∈ Y and q = qTΨ1/2

Γ ∈ Q that we want to employ operators RQ, RY such that for the
norms (4.2.3) holds

‖v‖Y = ‖R1/2
Y v‖`2 = 〈RYv,v〉, ‖q‖Q = ‖R1/2

Q q‖`2 = 〈RQq,q〉 . (4.2.32)

These Riesz operators RQ, RY are the `2 pendants of the Riesz operators introduced in (4.2.15) and
(4.2.16). The smallest and largest eigenvalues of RQ and RY shall be denoted by cQ, CQ and cY, CY

respectively,

cY‖v‖`2 ≤ ‖RYv‖`2 ≤ CY‖v‖`2 , cQ‖v‖`2 ≤ ‖RQv‖`2 ≤ CQ‖v‖`2 for all v ∈ `2 . (4.2.33)

The right hand side variables (f, y∗) and the unknowns (y, p, u) are now expanded in terms of these
weighted wavelet bases as

(f, y∗)T = (fT Ψ̃1
Ω,y

T
∗ Ψ1/2

ΓY
)T = (fTD+1

Ω Ψ̃Ω,yT∗ D−1/2
ΓY

ΨΓY
)T , (4.2.34)

(y, p, u)T = (yTΨ1
Ω,p

T Ψ̃1/2
Γ ,uTΨ1/2

Γ )T = (yTD−1
Ω ΨΩ,pTD+1/2

Γ Ψ̃Γ,uTD−1/2
Γ ΨΓ)T . (4.2.35)

The elliptic boundary value problem (4.2.6) can be discretized and preconditioned by the theory of
Section 3.1.2, and the operator L then exactly attains the form (3.1.26). The discrete trace operator
T : `2 → `2 descends from the continuous trace operator T just like the trace operator B from B does in
Definition (3.1.27), i.e.,

T := 〈Ψ̃1/2
ΓY
, TΨ1

Ω〉 = D+1/2
ΓY
〈Ψ̃ΓY

, TΨΩ〉D−1
Ω . (4.2.36)

These are all ingredients which are needed for the following reformulation of Problem 4.4:
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Problem 4.11 [Control Problem with Boundary Control in Wavelet Coordinates]
Given (f ,y∗)T ∈ `2(IIX × IIY ), find (y,p,u) ∈ `2(IIX × IIQ × IIQ), such that

J(y,u) =
1
2
‖R1/2

Y (Ty − y∗)‖2`2 +
ω

2
‖R1/2

Q u‖2`2 (4.2.37)

is minimized subject to

L
(

y
p

)
≡
(

A BT

B 0

)(
y
p

)
=
(

f
u

)
. (4.2.38)

Remark 4.12 Problem 4.11 can be viewed as the representation of Problem 4.2 in wavelet coordinates
in the following sense. Because we chose our norms ‖ · ‖Y, ‖ · ‖Q equivalent to the norms ‖ · ‖Y and ‖ · ‖Q
in (4.2.3) are the functionals (4.2.37) and (4.2.1) equivalent, i.e.,

J(y,u) ∼ J (y, u),

for any y = yTΨ1
Ω ∈ X, given y∗ = yT∗ Ψ1/2

ΓY
∈ Y and any u = uTΨ1/2

Γ ∈ Q. This obviously means
we are solving a different, albeit equivalent, problem. At this time, this modelling discrepancy cannot be
eliminated because fractional Sobolev space norms are not even uniquely defined, see Section 1.2. We
will try to minimize the potential gap with Riesz operators which model the fractional Sobolev norms
accurately. In the case of integer norms Y ∈ {L2,H

1},Q ∈ {L2,H
1} are the norms evaluated exactly. It

is in this sense that the new functional (4.2.37) captures the essential features of the original minimization
functional, see also the discussion in [28].

A unique minimizer can now be proved for this problem to exist by the same techniques as in Section 4.2.1 .
Rewriting y in terms of u again with the help of (3.2.20) yields

y = y(u) = A−1(B̃Tu + f̃) (4.2.39)

with the abbreviations

B̃T = BT (BA−1BT ),

f̃ = (I−BT (BA−1BT )−1BA−1)f .

The functional J rewritten as a function of the control u alone reads

J(u) = J(y(u)) =
1
2
‖R1/2

Y (TA−1(B̃Tu + f̃)− y∗)‖2`2 +
ω

2
‖R1/2

Q u‖2`2 . (4.2.40)

The discrete analogon to Proposition 4.6 now attains the following form:

Proposition 4.13 The functional (4.2.11) is twice differentiable on `2 with derivatives

DJ(u;v) = 〈RY(Ty(u)− y∗),TA−1B̃Tv〉+ ω 〈RQu,v〉
= 〈RY(TA−1(B̃′u + f̃)− y∗),TA−1B̃Tv〉+ ω 〈RQu,v〉 (4.2.41)

for all v ∈ `2 and

D2J(u;v,w) = 〈RY(TA−1B̃Tv),TA−1B̃Tw〉+ ω 〈RQv,w〉 (4.2.42)

for all v,w ∈ `2. Moreover, D2J satisfies for all v,w ∈ `2 the estimates

D2J(u;v,w) ≤ C∗‖v‖`2‖w‖`2 (4.2.43)

and
D2J(u;v,v) ≥ c∗‖v‖2`2 (4.2.44)

with constants
c∗ := ω cQ, C∗ := CY (cT,Ω c−1

L )2 + ω CQ . (4.2.45)

In particular, for ω 6= 0, J is strictly convex, i.e.,

D2J(u;v,v) > 0, for all v ∈ `2 \ {0} . (4.2.46)
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Proof: The identities (4.2.41) and (4.2.42) are proved exactly as in Proposition 4.6.
The derivation of the constants c∗ and C∗ is as follows. Considering the following saddle point problems
and relation (3.2.20),

L
(

ỹ
p̃

)
=
(

0
v

)
, L

(
y
p

)
=
(

0
w

)
,

we obtain the representations for ỹ and y as

ỹ = A−1B̃Tv, y = A−1B̃Tw .

Using these variables, we can give an upper bound for D2J(u;v,w) as

D2J(u;v,w) ≤ CY ‖T ỹ‖`2‖Ty‖`2 + ω CQ ‖v‖`2‖w‖`2 ,

where CQ, CY are the largest eigenvalues of RQ and RY. Now we can apply estimates (1.2.25) and
(3.1.29) to conclude

‖T ỹ‖`2 ≤ cT,Ω‖ỹ‖`2 ≤ cT,Ω c−1
L ‖v‖`2 ,

and correspondingly for y. By using this in the previous estimate, we obtain (4.2.43),

D2J(u;v,w) ≤ (CY (cT,Ω c−1
L )2 + ω CQ)‖v‖`2‖w‖`2 =: C∗‖v‖`2‖w‖`2 .

The lower estimate (4.2.44) is achieved by estimating

D2J(u;v,v) ≥ cY ‖T ỹ‖2`2 + ω cQ ‖v‖2`2 ≥ ω cQ ‖v‖
2
`2 ,

where cQ, cY are the smallest eigenvalues of RQ and RY. The convexity (4.2.46) of J(u) is obvious for
ω 6= 0.

The next step to solving Problem 4.11 is to form as in (4.2.17) the Lagrangian functional by
appending the conditions (4.2.38) by means of additional Lagrangian multipliers z, µ ∈ `2 to the
minimization functional (4.2.37), i.e.,

Lagr(y,p,u, z,µ) :=
1
2
‖R1/2

Y (Ty − y∗)‖2`2 +
ω

2
‖R1/2

Q u‖2`2 +
〈(

z
µ

)
,L
(

y
p

)
−
(

f
u

)〉
. (4.2.47)

This functional is utilized in the following Lemma, which is the `2-version of Lemma 4.7.

Lemma 4.14 Let J be the functional in (4.2.40) and let f ∈ `2 and y∗ ∈ `2 be given. Then the Euler
equations

δLagr(y,p,u, z,µ; r) = 0, for r = y,p,u, z,µ, (4.2.48)

for the minimization Problem 4.11 can be written shortly as

L
(

y
p

)
=

(
f
u

)
,

ωRQu = µ, (4.2.49)

LT
(

z
µ

)
=

(
−TTRY(Ty − y∗)

0

)
.

Proof: The proof is carried out exactly as in Lemma 4.7. The primal and adjoint systems result
from merely combining the first two and the last two Euler equations.

We can again infer from Proposition 4.13 an analogon to Proposition 4.9.

Proposition 4.15 The first variation of J is given by

δJ(u) = B̃A−TTTRY(Ty − y∗) + ωRQu (4.2.50)

= B̃A−TTTRY(TA−1(B̃Tu + f̃)− y∗) + ωRQu

= (B̃A−TTTRYTA−1B̃T + ωRQ)u + B̃A−TTTRY(TA−1f̃ − y∗)

=: Âu + f̂ . (4.2.51)
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The matrix Â is obviously symmetric positive definite. An equivalent representation is

δJ(u) = ωRQu− µ, (4.2.52)

which will be used in Section 4.4 to construct an inexact gradient method based on the iterative solving of
the primal and adjoint systems in (4.2.49).

Lastly, the Euler equations (4.2.49) can be assembled into one linear system of equations by eliminating
one variable.

Corollary 4.16 The operator N defined by

NU :=
(

L E
Ê LT

)
y
p
z
µ



:=


A BT 0 0
B 0 0 −ω−1R−1

Q

TTRYT 0 AT BT

0 0 B 0




y
p
z
µ

 =


f
0

TTRYy∗
0

 =: F (4.2.53)

is an `2-automorphism, i.e., for any V ∈ `2 := `2(IIN ) = `2(IIX × IIQ × IIX × IIQ) the equivalence

‖NV ‖`2 ∼ ‖V ‖`2 . (4.2.54)

holds.

Proof: We have for V = (y,p, z,µ) ∈ `2 by the reasoning as in (4.2.28),

‖NV ‖2`2 =

∥∥∥∥∥
( L

(
y
p

)
+ E

(
z
µ

)
Ê
(
y
p

)
+ LT

(
z
µ

))∥∥∥∥∥
2

`2

=

∥∥∥∥∥
( L

(
y
p

)
+
(

0
−ω−1R−1

Q µ

)
TTRYT

(
y
0

)
+ LT

(
z
µ

))∥∥∥∥∥
2

`2

≤ 2

(∥∥∥∥L(y
p

)∥∥∥∥2

`2

+ ‖ω−1R−1
Q µ‖2`2 +

∥∥∥∥L( z
µ

)∥∥∥∥2

`2

+ ‖TTRYTy‖2`2

)
,

and thus, with the constants from estimates (1.2.25), (3.1.29) and (4.2.33),

≤ 2

(
CL

∥∥∥∥(y
p

)∥∥∥∥2

`2

+ ω−1c−1
Q ‖µ‖

2
`2 + CL

∥∥∥∥( z
µ

)∥∥∥∥2

`2

+ (cT,Ω CT,Ω CY) ‖y‖2`2

)
= 2

(
(C2

L + (cT,Ω CT,Ω CQ)2)‖y‖2`2 + C2
L‖p‖2`2 + C2

L‖z‖2`2 + (C2
L + (ω cQ)−2)‖µ‖2`2

)
≤ 2

(
C2

L + max {(cT,Ω CT,Ω CQ)2, (ω cQ)−2}
)
‖V ‖2`2 .

The lower estimate follows as before by an application of the inverse mapping theorem (see [3]).

Next, we must investigate which stability conditions allow us to construct the finite dimensional
operator NJN from the `2-automorphism N.

4.2.3 Stability of the Finite-Dimensional Systems

We now discuss the transformation of Problem 4.11 into a finite-dimensional problem. We are going
to use the same notation for the level variables JN := (JX , JQ, JY ) ≡ (σ, π, τ) and JH = (σ, π) as in
Section 3.1.3, i.e.,

IIX,σ ⊂ IIX , IIQ,π ⊂ IIQ, IIY,τ ⊂ IIY . (4.2.55)

The problem will be well-posed in the Euclidean metric

`2(IIN ,JN ) := `2(IIX,σ × IIQ,π × IIX,σ × IIQ,π) .

The spaces corresponding to finite index sets are the linear wavelet spaces

Xσ := S(Ψ(Ω,σ)), Qπ := S(Ψ(Γ,π)), Yτ := S(Ψ(ΓY ,τ)) . (4.2.56)

Now, using these finite discretizations, Problem 4.11 reads
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Problem 4.17 [Control Problem with Boundary Control in Finite Wavelet Coordinates]
Given (fσ,y∗,τ )T , find (yσ,pπ,uπ)T such that

J(yσ,uπ) =
1
2
‖R1/2

Y,τ (Tσ,τyσ − y∗,τ )‖2`2 +
ω

2
‖R1/2

Q,πuπ‖
2
`2 . (4.2.57)

is minimized subject to

LJH

(
yσ
pπ

)
≡
(

Aσ BT
σ,π

Bσ,π 0

)(
yσ
pπ

)
=
(

fσ
uπ

)
. (4.2.58)

This problem can obviously be dealt with by the same techniques as described in Section 4.2.2 . The
steps leading to Proposition 4.13 are all unchanged. Only the boundedness of the second derivative of
the functional (4.2.57) requires special attention:

D2J(uπ;vπ,wπ) = 〈RY,τ (Tσ,τA−1
σ B̃T

σ,πvπ),Tσ,τA−1
σ B̃T

σ,πwπ〉+ ω 〈RQ,πvπ,wπ〉 (4.2.59)

This expression is obviously bounded from above and below, if the spectral norms of the matrices
R1/2

Y,τTσ,τA−1
σ B̃T

σ,π and R1/2
Q,π are bounded uniformly. The Riesz maps RQ,π and RY,τ are uniformly

stable because of the Riesz basis property (S)(2.1.5). Specifically, we have for RJ ∈ {RQ,π,RY,τ} with
the definitions of the constants in (2.2.35) that

cΨJ
‖vJ‖`2 ≤ ‖R

1/2
J vJ‖`2 ≤ CΨJ

‖vJ‖`2

holds. The remaining matrix Tσ,τA−1
σ B̃σ,π is uniformly stable if the saddle point problem (4.2.58) and

the operator Tσ,τ is uniformly stable. Since we arranged at the beginning of this section Problem 3.14 to
be our constraint in the original problem formulation (Problem 4.2), this entails that stability is ensured
by an application of the Theorem 3.4. This in turn specifically means satisfying the discrete ellipticity
condition (3.1.36) and the LBB-condition (3.1.39).
Since stability can be ensured, the resulting finite dimensional Euler equations (cf. (4.2.49)),

LJH

(
yσ
pπ

)
=

(
fσ
uπ

)
,

ωRQ,πuπ = µπ, (4.2.60)

LTJH

(
zσ
µπ

)
=

(
−TT

σ,τRY,τ (Tσ,τyσ − y∗,τ )
0

)
,

then lead to the operator NJN defined as

NJNUJN :=


Aσ BT

σ,π 0 0
Bσ,π 0 0 −ω−1R−1

Q,π

TT
σ,τRY,τTσ,τ 0 AT

σ BT
σ,π

0 0 Bσ,π 0




yσ
pπ
zσ
µπ



=


fσ
0

TT
σ,τRY,τy∗,τ

0

 =: FJN , (4.2.61)

to be an automorphism
‖NJNUJN ‖`2 ∼ ‖UJN ‖`2 , (4.2.62)

on the space `2(IIN ,JN ).

4.2.4 Variation of Norms

We have mentioned before that the natural Sobolev index for the observation space Hs(ΓY ) and the
control space Ht(Γ) in the formulation of Problem 4.2 is s = t = 1/2 for our control problem with
Dirichlet boundary control. As we have seen in Section 4.2.1, this leads to a well-defined problem, for
which exactly one solution exists.
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Remark 4.18 More generally, we can extend our original problem by replacing the functional (4.2.1)
with

J (y, u) =
1
2
‖y − y∗‖2Hs(ΓY ) +

ω

2
‖u‖2Ht(Γ), 0 ≤ s, t ≤ 1, (4.2.63)

which means measuring the state and control with coarser or finer norms than the natural ones. Of
course, we have to assume at least u ∈ H1/2 in order to have a well-posed problem. Thus, we cannot
expect choices t < 1/2 will always yield correct or meaningful results. Especially the case s = t = 0 is
not sufficient to guarantee well-posedness of the control problem.

In the wavelet context, this change implies the insertion of another diagonal matrix in the minimization
functional (4.2.37): Theorem 2.17 established the diagonal matrices Dp as operators from Hk → Hk−p

for any k and p. So, ideally, we have for v = vTΨ1/2
Γ ∈ H1/2(Γ) and with the Riesz operator RHt for

Ht(Γ),
‖v‖Ht(Γ) = ‖R1/2

Ht D−1/2+t
Γ v‖`2 . (4.2.64)

As such, the functional (4.2.63) in wavelet coordinates looks like (4.2.37) with the addition of the new
diagonal scaling and proper Riesz operators as

J(y,u) =
1
2
‖R1/2

Hs D−1/2+s
ΓY

(Ty − y∗)‖2`2 +
ω

2
‖R1/2

Ht D−1/2+t
Γ u‖2`2 . (4.2.65)

Carrying out the construction process described in Section 4.2.2 with this functional leads to the following
system of linear equations (cf. (4.2.60)) :

TTD−1/2+s
ΓY

RHs(D−1/2+s
ΓY

Ty − y∗) + Az + BTµ = 0,
Bz = 0,

ωD−1/2+t
Γ RHtD−1/2+t

Γ u− µ = 0, (4.2.66)
Ay + BTp− f = 0,

By − u = 0 .

We retain (4.2.49) for s = t = 1/2, since the diagonal operators then coincide with the identity. The
above equations can be shortened by the definition of a trace operator Ť : H1(Ω)→ Hs(ΓY ) in wavelet
coordinates:

Ť := D−1/2+s
ΓY

◦T = Ds
ΓY
〈Ψ̃ΓY

, TΨΩ〉D−1
Ω . (4.2.67)

We introduce the following variables and operators in the same fashion:

B̌ := D−1/2+t
Γ ◦B, y̌∗ := D−1/2+s

ΓY
y∗,

p̌ := D−1/2+t
Γ p, µ̌ := D−1/2+t

Γ µ, ǔ := D−1/2+t
Γ u .

The assembled system then has the form

ŇǓ :=


A B̌T 0 0
B̌ 0 0 −ω−1R−1

Ht

ŤTRHsŤ 0 AT B̌T

0 0 B̌ 0




y
p̌
z
µ̌

 =


f
0

ŤTRHs y̌∗
0

 =: F̌, (4.2.68)

Note that this operator Ň does no longer have a uniformly bounded condition number. This can be seen
by analyzing the new saddle point operator Ľ of the upper left and lower right block:

Ľ :=
(

A B̌T

B̌ 0

)
=
(

I 0
0 D−1/2+t

Γ

)(
A BT

B 0

)(
I 0
0 D−1/2+t

Γ

)
. (4.2.69)

Proposition 4.19 The operator Ľ does not have uniformly bounded condition for t 6= 1/2.

Proof: Depending on the value of t relative to 1/2 the diagonal matrices D−1/2+t
Γ have either no

smallest (t < 1/2) or no largest (t > 1/2) uniformly bounded eigenvalue. Since L has uniformly bounded
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eigenvalues and the diagonal matrices do not, Ľ cannot have a bounded condition.

The operator Ľ is obviously still invertible and a unique solution exists for given right hand side.
In fact, the equations

Ľ
(

y
p

)
=
(

f
g

)
, L

(
y̌
p̌

)
=
(

f̌
ǧ

)
,

are algebraically (although not numerically) equivalent, which resolves the problem of unboundedness of
the condition. However, this does not work with (4.2.68) though, since N then reads

A BT 0 0
B 0 0 −ω−1Ř−1

Ht

ŤTRHsŤ 0 AT BT

0 0 B 0




y
p
z
µ

 =


f
0

ŤTRHs y̌∗
0

 , (4.2.70)

abbreviating
ŘHt := ŘHt(Γ) := D+1/2−t

Γ RHtD+1/2−t
Γ . (4.2.71)

Now the upper right and lower left blocks are still scaled and induce increasing eigenvalues. This change
obviously also affects the finite discretization operator ŇJN . However, in applications, this effect is rarely
seen because of the nature of wavelet discretizations, explained as follows.
A uniformly bounded condition number means that the extremal eigenvalues of any symmetric positive
definite operator Aσ are constant for all levels. That implies that these extremal eigenvalues ideally refer
to wavelets on the lowest possible level j = j0. The additional eigenvalues {λi} which arise on higher
level discretizations j > j0 are now enclosed by the extremal eigenvalues: λmin ≤ λi ≤ λmax for all i.
The diagonal scaling D±l in general has entries of magnitude ∼ 2±jl, which enforce ill conditioning of
our matrix. The eigenvalues arising from the higher levels j > j0 will be scaled by the much higher (or
lower) values, depending on the sign of the exponent l. Assuming λi ≈ 1 and for some constant c > 1,

λmax

λmin
=

c

1/c
= c2,

we can expect so see a significant change of the condition number on levels j & log2(c)/|l|.
Our diagonal scalings D−1/2+s

ΓY
and D−1/2+t

Γ have exponent values of between −1/2 and 1/2 which are
beneficial for an even higher lower bound. In this application, the perturbation of the condition number
is rarely observed, because it usually applies for high levels j � j0 only.
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4.3 A Control Problem with Dirichlet Boundary Control

Now the optimal control problem we are going to discuss in Section 5 is presented. Let Ω = � = (0, 1)n be
the unit cube in IRn. The control boundary Γ is selected as the face with coordinates x = (1, x2, . . . , xn)
or Γ = ΓW with the definition of Section 3.2.3. In addition, we choose the state boundary ΓY to be the
opposite face ΓE with coordinates x = (0, x2, . . . , xn). Furthermore, we set ΓN := ∂Ω \ Γ. The following
graphics depicts the case n = 2:

control boundary Γ

(0,0)

(1,1)(0,1)

(1,0)

Ω = (0, 1)2

observation boundary ΓY

The two corresponding trace operators are denoted by B = γE : H1(Ω)→ H1/2(Γ) and
T = γW : H1(Ω)→ H1/2(ΓY ), see Section 3.2.3 for the definition. This setup is used in the follow-
ing

Problem 4.20 [Control Problem with Dirichlet Boundary Control]
For given f ∈ (H1(Ω))′ and yΓY

∈ Hs(ΓY ), minimize

J (y, u) =
1
2
‖Ty − yΓY

‖2Hs(ΓY ) +
ω

2
‖u‖2Ht(Γ), (4.3.1)

where the state y and the control u are coupled by the following elliptic boundary value problem
(confer with Section 3.2.3)

−∇ · (a∇y) + a0 y = f in Ω,
y = u on Γ, (4.3.2)

(a∇y) · n = 0 on ΓN .

The term n = n(x) denotes the outward normal at every point x ∈ ΓN . As before, a(x) = (ai,j(x))i,j
is uniformly positive definite on Ω and a0 > 0. Since we have the regularity y|∂Ω ∈ H1/2(∂Ω), we can
adjust the Sobolev norms in the functional (4.3.1). The problem is still well-posed if the value of s is
chosen to be smaller than 1/2. Values s > 1/2 are only admissible if the solution state y lives in a higher
smoothness space than H1(Ω). This can be assured if the right hand side is given f ∈ L2. Because we
have to guarantee at least u ∈ H1/2(Γ) for (4.3.2) are values t ≥ 1/2 feasible. Choosing t < 1/2 may not
yield meaningful results.

The `2-Problem

The constrains (4.3.2) of Problem 4.20 are formulated with the theory of Section 3.2.3 as a sad-
dle point problem. The wavelet bases used in the setup of this problem are, of course, those of
Section 2.3.2 in tensor product constructions,

ΨII
Ω :=

n⊗
i=1

ΨII , Ψ̃II
Ω :=

n⊗
i=1

Ψ̃II . (4.3.3)

In case n > 2 the domains Γ and ΓY are constructed by n− 1 tensor products of the interval I such that

ΨII
ΓY

= ΨII
Γ :=

n⊗
i=2

ΨII , Ψ̃II
ΓY

= Ψ̃II
Γ :=

n⊗
i=2

Ψ̃II . (4.3.4)
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The construction of the stiffness matrix A and the trace operators T and B was shown in Paragraph 3.2.3.
As it was proved there, the resulting operator L is an isomorphism and in the correctly scaled wavelet
discretizations are also `2-isomorphisms. Because these tensorized primal wavelet bases allow the norm
equivalences described in Theorem 2.17 for up to γ = 3/2, they are well suited for our example problem.
Now we can employ the theory of Section 4.2 to obtain the representer given by equations (4.2.66) for
our problem. In case of the natural constraints in (4.3.1), i.e., s = t = 1/2, Corollary 4.16 applies and
yields the `2-isomorphism N defined in (4.2.53).

Stability Remarks

Stability of the saddle point operator LJH was examined in Paragraph 3.2.3. Recall that sta-
bility is ensured by the LBB-condition (3.1.39) and the discrete ellipticity condition (3.1.36).
These, in turn, depend on the specific control boundary Γ ⊂ ∂Ω and the actual values of the coefficient
matrix a and a0 in (4.3.2). Corollary 3.6 then gives the desired result.
The stability remarks for general Riesz operators were discussed in Section 4.2.3 and apply here to the
Riesz operators RHs,τ and RHt,π. Thus, the operator NJN defined in (4.2.61) fulfills the isomorphism
relation (4.2.62) in case s = t = 1/2.

4.3.1 Implementation Details of the Riesz Operators

There are several possible ways to construct Riesz operators for our use. The ideal construction given by
(2.2.38),

RH = (Ψ,Ψ)H, (4.3.5)

cannot be applied for H ∈ {Hs(Γ),Ht(ΓY )} with s, t /∈ ZZ, because the inner product is not uniquely
defined, see Section 1.2. We could always use the approximations

RHs ≈ RL2 , RHs ≈ Id, (4.3.6)

where the last equivalence is identical to using no Riesz operator at all. In many cases, these approxima-
tions might suffice. However, we are going to use the diagonal scaling based construction (2.2.44),

R̂Hs = D−sD̂+s
(
ΨII ,ΨII

)
L2

D̂+sD−s, (D̂+s)(j,j′)(k,k′) = 2+jsδ(j,j′)δ(k,k′), (4.3.7)

because it leads to better results in actual calculations, see Section 5.2.3. We are also going to use the
new interpolating Riesz operator construction from [11].
One detail, which has not yet been discussed, is the application of the inverse of the Riesz operator
R̂Hs in (4.2.53). Although we have the mathematical equality

R̂−1
Hs = D+sD̂−s

(
Ψ̃II , Ψ̃II

)
L2

D̂−sD+s

= D+sD̂−s T̃T
(
Φ̃, Φ̃

)
L2

T̃ D̂−sD+s,

it cannot be constructed in this way, because the dual generators Φ̃ are not explicitly given (see
Section 2.3). However, we can use the correlation of the primal and dual bases (2.1.60) and their wavelet
transforms (see Figure 2.1) to express the above as

R̂Hs = D+sD̂−sT−1 (Φ,Φ)−1
L2

T−T D̂−sD+s . (4.3.8)

Our primal generators φj , defined in (2.3.25), have a very small support ∼ 2−j , and the resulting matrix

MΦ = (Φ,Φ)L2
(4.3.9)

is, thus, very sparse. Specifically, it is a band matrix with band width 1 everywhere except for a 4 × 4
block at the matrix’s upper left and lower right corner. These blocks stem from the increased support of
the generators at the interval borders.
Since MΦJ

must be an `2-isomorphism, each inversion can be calculated by the CG scheme (Algo-
rithm 3.25) very quickly. Each application of M−1

ΦJ
can be carried out in O(#IIΓ,J) operations every
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time. It is, however, possible to analytically calculate the LU-decomposition of MΦJ
and use this in-

formation to program a routine which does the job also in O(#IIΓ,J) but with a smaller constant factor
than the CG solver. Thus, the application of the Riesz operator R̂Hs and its inverse R̂−1

Hs can both be
carried out in linear time with respect to the number of unknowns.
This still holds true in higher dimensions since the tensor product structure yields

M−1
ΦJ⊗···⊗ΦJ

= (MΦJ
⊗ · · · ⊗MΦJ

)−1

= M−1
ΦJ
⊗ · · · ⊗M−1

ΦJ
. (4.3.10)

Each application of M−1
ΦJ

is now implemented by the above mentioned LU-decomposition scheme.
These thoughts conclude the construction of the involved operators for our control problem in wavelet
discretization.
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4.4 Algorithms

There are several possible ways to determine the solutions yσ ∈ `2(IIΩ,σ) and uπ ∈ `2(IIΓ,π) of Prob-
lem 4.17. The main task is to propose algorithms which are computationally efficient in the sense
that the finite-dimensional equations are solved with optimal complexity, i.e., proportional to the number
of unknowns NJ := #IIN ,JN .

Remark 4.21 In the following, we treat the representation of Problem 4.17. The case of Section 4.2.4
is handled in complete analogy, and we spare us here the extra terms the change of the norms induce.
The whole change can easily be implemented by using the Ť, B̌ version of the Trace operators, (4.2.67),
and of the Riesz operator ŘHt , (4.2.71).

4.4.1 An All-In-One Solver

One way to obtain the solutions yσ, uπ is by solving the linear equation (4.2.61),

NJNUJN =


Aσ BT

σ,π 0 0
Bσ,π 0 0 −ω−1R−1

Ht,π

TT
σ,τRHs,τTσ,τ 0 AT

σ BT
σ,π

0 0 Bσ,π 0




yσ
pπ
zσ
µπ



=


fσ
0

TT
σ,τRHs,τyΓY ,τ

0

 = FJN . (4.4.1)

This can be done with a direct solver like LU-decomposition or QR-decomposition on levels j ≈ j0. For
higher levels j � j0 this technique is not feasible because of the cubic complexity O(N3) in the number
of unknowns N of these algorithms.
Rather, we use the nested iteration scheme, Algorithm 3.23, with a direct solver on level j = j0
and the conjugate gradient solver, Algorithm 3.25, for levels j > j0 applied to the normal equation
NT
JN

NJNUJN = NT
JN

FJN . This is necessary because the matrix NJN is not symmetric and nor pos-
itive definite. The squared matrix NT

JN
NJN , however, has both properties and, consequently, the CG

algorithm can be applied. We quote the following corollary from [46].

Corollary 4.22 The vector UJN solves (4.4.1) if and only if UJN solves the system

PJNUJN := NT
JNNJNUJN = NT

JNFJN . (4.4.2)

Moreover, the matrix PJN defines an automorphism of `2(IIN ,JN ) and one has

V T
JNPJNV JN = ‖NJNV JN ‖2`2 ∼ ‖V JN ‖2`2 . (4.4.3)

The drawback, however, is that the matrix PJN possesses an absolute higher condition number than the
matrix NJN ,i.e., it holds

κ(PJN ) = (κ(NJN ))2 . (4.4.4)

Since the convergence speed (3.3.4) of the CG algorithm depends on this condition number, the conver-
gence rate expected for the system (4.4.2) is expected to be lower than for (4.4.1). Note that the nested
iteration scheme combined with the conjugate gradient scheme used on the normalized problem still has
complexity O(#IIN ,JN ). The constants in this estimate might yet be very high and this whole scheme is
thus not very attractive for applications.
One approach to lower the costs of each execution is based on a permutation of the rows of the operator
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NJN , yielding a symmetric operator, i.e.,

N′
JNU′

JN :=


TT
σ,τRHs,τTσ,τ 0 AT

σ BT
σ,π

0 0 Bσ,π 0

Aσ BT
σ,π 0 0

Bσ,π 0 0 −ω−1R−1
Ht,π




zσ
µπ
yσ
pπ



=


TT
σ,τRHs,τyΓY ,τ

0
fσ
0

 =: F′JN . (4.4.5)

Now we could apply the CG algorithm to N′
JN

U′
JN

= F′JN directly if this operator is found to be positive
definite. This should lower the total amount of steps needed to calculate U′

JN
up to discretization

accuracy.
However, the positivity is not assured. As a remedy, we present next an algorithm for iteratively solving
the systems of equations (4.2.49).

4.4.2 An Inexact Gradient Solver

A simple gradient algorithm is sufficient to minimize the functional J depending only on u derived in
(4.2.11). The algorithm starts out with a vector xπ and calculates in each step the gradient of the func-
tional at the current point to determine the direction in which to proceed. After it has walked in this
direction with a certain step size ρi, the cycle begins anew until a minimum (or a certain proximity to a
minimum) is reached. This algorithm reads

Algorithm 4.23 BASIC[δ, {ρi},xπ]→ uδπ

(i) Set k := 0

u(0)
π := xπ

(ii) Repeat
k ← k + 1
u(k)
π ← u(k−1)

π − ρk−1 δJ(u(k−1)
π )

Until ‖u(k)
π − u(k−1)

π ‖`2 ≤ ρk−1 δ

(iii) Return u(k)
π

The convergence of the gradient algorithm can abstractly be determined by characteristics of the func-
tional (4.2.37). A general result for twice differentiable, strictly convex functionals like our functional
(4.2.37) can be found in [17]. The possible range of the step size parameters ρi, for which this algorithm
converges, is determined by the following proposition from [46].

Proposition 4.24 Algorithm 4.23 converges for any initial guess xπ for ρi satisfying

0 < ρ∗ ≤ ρi ≤ ρ∗ < 2
c∗

(C∗)2
, (4.4.6)

where c∗ and C∗ are the constants defined in (4.2.45). The parameters ρ∗ and ρ∗ are fixed chosen values.

To bring Algorithm 4.23 into a computationally more efficient form, the alternative characterization of
δJ(u) in (4.2.52) is used. To this end, consider the independent systems of (4.2.60),

LJH

(
y(i+1)
σ

p(i+1)
π

)
=

(
fσ

u(i)
π

)
, (4.4.7)
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and

LTJH

(
z(i+1)
σ

µ
(i+1)
π

)
=

(
−TT

σ,τRHs,τ (Tσ,τy
(i+1)
σ − yΓY ,τ )

0

)
. (4.4.8)

The importance of these equations is that the evaluation of δJ(uiπ) is equivalent to

δJ(u(i)
π ) = ωRHt,πu(i)

π − µ(i+1)
π , (4.4.9)

where µ
(i+1)
π is part of the solution of (4.4.8). The proof of this correlation can be found in [46]. Thus,

Algorithm 4.23 can be implemented directly using other algorithms to calculate the solutions of (4.4.7)
and (4.4.8). This can be done, for example, by direct solvers like QR- and LU-decomposition for LJH
on the lower levels j ≈ j0. However, for higher levels we have to resort to fully iterative solvers like the
CG (Algorithm 3.25) or Uzawa algorithms (Algorithm 3.26, Algorithm 3.27).
These algorithms require a tolerance limit which determines the precision of the calculated solutions.
Because the tolerance cannot - and shall not - be enforced too strictly, it is, for example, restricted by
machine precision, we call the following algorithm an inexact gradient method. This notation pays
tribute to the fact that the inversion of the matrix LJH by iterative solvers is not exactly the application
of the matrix L−1

JH
. The inner tolerances εy(k + 1, JH) and εµ(k + 1, JH) are specified in Theorem 4.26

below.

Algorithm 4.25 Inexact Gradient[δ, {ρi},xπ]→ uπ

(i) Set k := 0
u(k)
π := xπ

(ii) Repeat

(ii.1) Calculate the approximate solution (ỹ(k+1)
σ , p̃(k+1)

π )T of (4.4.7) with

right hand side (fσ,u
(k)
π )T and initial guess (ỹ(k)

σ , p̃(k)
π )T until

∥∥∥∥LJH
(

ỹ(k+1)
σ

p̃(k+1)
π

)
−

(
fσ

u(k)
π

)∥∥∥∥
`2

< εy(k + 1, JH)

(ii.2) Calculate the approximate solution (z̃(k+1)
σ , µ̃(k+1)

π )T of (4.4.8) with

right hand side (−TT
σ,τRHs,τ (Tσ,τ ỹ

(k+1)
σ − yΓY ,τ ),0)T and

initial guess (z̃(k)
σ , µ̃(k)

π )T until∥∥∥∥LTJH
(

z̃(k+1)
σ

µ̃(k+1)
π

)
−
(
−TT

σ,τRHs,τ (Tσ,τ ỹ
(k+1)
σ − yΓY ,τ )

0

)∥∥∥∥
`2

< εµ(k + 1, JH)

(ii.3) Update u(k)
π by

r(k)
π

u(k+1)
π

:=

←
u(k)
π − ω−1R−1

Ht,πµ̃
(k+1)
π

u(k)
π − ρk r(k)

π

and
k ← k + 1

Until ‖r(k−1)
π ‖`2 ≤ δ

(iii) Return u(k)
π

Before we specify further implementation details of this gradient scheme, recall from [8] that the conver-
gence speed θgrad of the gradient method 4.23 depends on the spectral condition number of the symmetric
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positive definite matrix ÂJ in (4.2.51), i.e.,

0 ≤ θgrad :=
κ2(ÂJ)− 1
κ2(ÂJ) + 1

< 1 . (4.4.10)

This means that for every iteration of Algorithm 4.23 there is some 0 < θ ≤ θgrad such that the error is
reduced in each iteration step by a fixed fraction, i.e.,

‖u(k+1)
π − u∗π‖`2 ≤ θ ‖u(k)

π − u∗π‖`2 , (4.4.11)

where u∗π is the exact element of `2(IIπ) minimizing J(·) from (4.2.40). Let τ(u∗π) be an estimate for the
discretization error on level π, i.e.,

‖u(0)
π − u∗π‖`2 ≤ τ(u∗π) . (4.4.12)

The following result from [46] shows the dependence of the tolerances involved in the above formulation.

Theorem 4.26 If the tolerances εy(i + 1, JH) and εµ(i + 1, JH) in Algorithm 4.25 are selected at each
stage according to

εy(i+ 1, JH) :=
1
2

cL

CLρi

θi

(i+ 1)2
τ(u∗π), (4.4.13)

εµ(i+ 1, JH) :=
1
2

1
CLρi

θi

(i+ 1)2
τ(u∗π), (4.4.14)

then Algorithm 4.25 converges for any initial guess xπ for ρi satisfying

0 < ρ∗ ≤ ρi ≤ ρ∗ < 2
c∗

(C∗)2
, (4.4.15)

where the constants c∗ and C∗ are defined in (4.2.45) with cL and CL from (3.1.29).

Computational Work in a Nested Iteration Scheme

The above Algorithm 4.25 is optimal in the sense that it only requires a fixed amount of itera-
tions to reduce the error ‖u(i)

π − u∗π‖`2 by any constant factor. This behavior will now be examined in a
nested iteration scheme (Algorithm 3.23).
Let us assume that after ij steps of Algorithm 4.25 we have determined the element u(ij)

j on level j
which satisfies

‖u(ij)
j − u∗j‖`2 ≤

1
2
τ(u∗j ), (4.4.16)

with τ(uj) defined in (4.4.12) and u∗j being the exact solution of level j. Now prolongate u(ij)
j to level

j + 1 to be used as initial guess for the iteration on that level. This can be done easily in the wavelet
framework by adding zeros at the correct positions of the vector u(ij)

j . In view of Remark 3.22, we write

u(0)
j+1 := u(ij)

j . (4.4.17)

The number ij+1 of iterations necessary to reduce the error analogous to (4.4.16),

‖u(ij+1)
j − u∗j+1‖`2 ≤

1
2
τ(u∗j+1), (4.4.18)

can now be shown to be independent of j, see [46]. Since we have, thus, by construction

εµ(i+ 1, j)
εµ(i, j)

=
εy(i+ 1, j)
εy(i, j)

≈ τ(uj+1)
τ(uj)

−→ const < 1,

we only need to reduce the error on each level by a constant factor. We know that this can be done in
a constant amount of steps ij for each j. The error bounds given by (4.4.13) and (4.4.14) can, thus, be
achieved with a number of steps independent of the discretization and level, if we prolongate ỹ(ij)

j and
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µ̃
(ij)
j for use in the next iteration of the nested iteration scheme.

If the matrices in (ii.1) and (ii.2) from Algorithm 4.25 have optimally bounded spectral condition num-
bers, we know that the Uzawa algorithms Algorithm 3.26 and Algorithm 3.27 have a convergence rate
independent of the discretization and level. Thus, only a uniformly bounded number of Uzawa steps and,
consequently, computational work of order O(#IIH,JH) is needed in each calculation.
As we have mentioned in Section 4.3.1, the inversion of the Riesz operator can be done in linear time.
Step (ii.3) can therefore be neglected for the overall complexity at this point.
Using a direct solver like LU- or QR-decomposition on level j = j0 and prolongation operators for
every step, we can conclude by a geometric series argument that the overall accumulated complexity is
always proportional to the number of unknowns on the current level, i.e., O(#IIN ,JN ). To summarize
this, we quote from [46].

Theorem 4.27 If in each iteration of Algorithm 4.25 the systems in steps (ii.1) and (ii.2) are solved
up to tolerances (4.4.13) and (4.4.14) and these solutions are taken as initial guesses for the next higher
level, then Algorithm 4.25 is an asymptotically optimal method in the sense that it provides the solution
up to the discretization error on levels JN in an overall amount of O(#IIN ,JN ) operations, where #IIN ,JN
is the total number of unknowns in steps (ii.1), (ii.2) and (ii.3).
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5 Numerical Results

5.1 Numerical Evaluation of the Wavelet Bases

Wavelet theory offers a lot of features for theoretical and practical use, all of which has been outlined in
Section 2. The characteristic mostly payed attention to is the spectral condition number of the involved
system operator. These condition numbers were shown to be bounded uniformly, i.e., independent of the
discretization and level under certain circumstances, see (2.2.31) and Section 3.1.3. The actual values
of these constant bounds depend strongly on the type of wavelets and the preconditioner used in the
discretization. Wavelet theory permits many tweaks to further reduce its absolute value, like improved
diagonal preconditioners (like (3.2.34)) or simple basis transformations (see Section 2.3.3).
We have several different wavelet constructions and optimizations thereof available for using in appli-
cations. We will now show a list of these and the abbreviations used on the following pages to denote
them:

DKU This MRA provides the groundwork for the following types. It was introduced by Dahmen,
Kunoth and Urban in [30]; their construction is outlined in Section 2.3 . Images of the
primal and dual wavelets were presented in Section 2.3.2 . The primal generators are
defined in (2.3.25). When displaying functions expanded using this basis, their coefficient
vectors must be transformed to the nodal basis first.

DKU-Orth This MRA is implemented with the orthogonal basis transformation (2.3.39) which is specif-
ically useful for reducing the condition numbers of the stiffness matrices.

B As mentioned in Section 2.3.2, the wavelets of this MRA are scaled according to
Lemma 2.41, using the value defined in (2.3.28). This scaling was first introduced by
Carsten Burstedde in [11], hence the name ”B”1. The generator bases are taken as in the
DKU-case.

B-Nodal This derivation of the B-type is constructed by applying a basis transformation of the form
(2.3.30). The primal boundary generators are transformed to the nodal basis.

B-SVD This derivative of the DKU-type is constructed by applying the block singular value de-
composition transformation defined in (2.3.35). The parameter q is chosen differently for
varying spatial dimensions to achieve best effect in any case.

B-Orth This MRA implements the orthogonal basis transformation (2.3.39) specifically designed
for reducing the condition numbers of the stiffness matrices.

P This MRA was designed by Miriam Primbs [56] with the focus on particularly low con-
dition numbers of the fast wavelet transform. They should offer all the same traits as
the DKU type; but construction is still ”work in progress”. These wavelets have just
been included for testing purposes and the results should be considered preliminary. The
primal generator basis consists merely of the linear nodal hat functions restricted to the
interval (0, 1).

P-Orth Orthogonal basis transformation applied to the P-type MRA.

The actual computational results do not only depend on the type of wavelets and the applied basis
transformations but also on the kind of preconditioner used, as we will see in the numerical experiments.
Certain basis transformations and the right preconditioner combined can yield improvements in the
absolute values of the condition numbers by several orders of magnitude.

Remark 5.1 This section focuses on the properties of the building blocks used for the control problem of
Section 4.3. We like to emphasize that no operators are explicitly assembled in any application, as this
would spoil the sparsity of the matrices in wavelet discretization. The images of operators presented on
the next pages are made by consecutively calculating the matrix products with the unity vectors, one at a
time. This technique is employed for illustration purposes only and never in calculations.

1A more appropriate name might have been ”DKU-B”, but we traded accurateness for readability here.
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5.1.1 The Fast Wavelet Transform

The spectral condition numbers of the multiscale transformation matrices TJ are uniformly bounded
according to Theorem 2.13 in order to achieve the Riesz basis property for the wavelet bases. We show
the computed numbers for the different types described in Section 5.1 in Table 5.1. Since TJ is not

symmetric, we calculate
√
κ2(TT

JTJ) as an approximation. Note that the condition number of the Fast
Wavelet Transform does not allow direct transfer to the condition numbers of any operators: a lower
bound does not imply a lower bound for the condition of the stiffness matrix.

J #∆J κ2(TDKU) κ2(TB) κ2(TB-Nodal) κ2(TP)

3 9 1.0000e+00 1.0000e+00 1.0000e+00
4 17 4.7433e+00 4.6401e+00 3.8924e+00 1.0000e+00
5 33 6.2211e+00 6.0239e+00 5.2485e+00 1.5666e+00
6 65 8.1548e+00 6.8603e+00 6.3985e+00 2.0994e+00
7 129 9.4736e+00 7.3961e+00 7.1528e+00 2.4861e+00
8 257 1.0236e+01 7.7073e+00 7.5827e+00 2.7362e+00
9 513 1.0648e+01 7.8764e+00 7.8133e+00 2.9024e+00
10 1.025 1.0863e+01 7.9652e+00 7.9334e+00 3.0145e+00
11 2.049 1.0974e+01 8.0108e+00 7.9948e+00 3.0922e+00
12 4.097 1.1030e+01 8.0340e+00 8.0260e+00 3.1474e+00
14 16.385 1.1072e+01 8.0516e+00 8.0496e+00 3.2174e+00
16 65.535 1.1083e+01 8.0561e+00 8.0556e+00 3.2569e+00

∼ 2J 1 1 1 1

Table 5.1: Comparison of the condition numbers of several fast wavelet transform matrices in 1D. Because
of definition (2.1.28) the wavelet transform on the minimum level j0 = 3 is the identity and its condition
must be exactly 1 in any case. By comparing the columns TB and TB-Nodal, we can see the negative
impact of the boundary adapted primal generators Φj0 of (2.3.25) on the condition numbers on small
levels. The after-effect of this small adaption in the case of TB-Nodal vanishes for higher levels as more
wavelets are added and the relative importance of the single-scale basis Φj0 thus decreases. The P-type
wavelet transform was designed to exhibit very small absolute condition numbers.

The condition numbers of the tensorized fast wavelet transform matrices are simply powers of the numbers
in Table 5.1, e.g., in 2D all numbers are squared.
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Figure 5.1: General form of the Fast Wavelet Transform TJ and T−1
J for the B-type MRA in 1D. The

left graphic shows the fast wavelet transform from level j = j0 = 3 up to J = 8 and the right graphics
its inverse.
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5.1. Numerical Evaluation of the Wavelet Bases

5.1.2 Stiffness Matrices

The spectral properties of the stiffness matrix A are generally considered to be the primary criteria for
the effectiveness of a wavelet basis. It is of special interest in our application since it largely determines
the condition of the Schur complement (3.2.15) and, thus, the speed of Algorithms 3.26 and 3.27.
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Figure 5.2: General form of the stiffness matrix (with B-type MRA). In the first row, we display the
stiffness matrix on level j = 8 in 1D, assembled in the generator basis on the left and transformed into
the properly scaled wavelet basis on the right. The second row presents the 2D stiffness matrix on level
j = 4 (left: single-scale basis; right: in wavelet basis).

In Tables 5.2, 5.3 and 5.4 we show the condition numbers of the stiffness matrix for several wavelet
constructions and the standard preconditioner D−1

1 from (2.2.14). The column κ2 (AΦj
) depicts the

condition numbers for the stiffness matrix assembled in the single-scale basis Φj of (2.3.25) with no
preconditioning used. We see that the DKU-type wavelets exhibit the best condition numbers for this
preconditioner. Although the border block transformation (2.3.37) (columns AB-SVD) proves to be well
suited for 1D, the tensor product construction does not apply for higher dimensions. The B-Orth and
P-Orth constructions are not listed in these tables because there can be no change in condition numbers
compared to the B− and P−type, respectively, when using the standard preconditioner.
Tables 5.5, 5.6 and 5.7 show the results for several wavelet types and the preconditioner D−1

a . This
preconditioner generally produces lower condition numbers as it is literally adapted for ”itself”.
Note that there is no difference in this case between the B- and DKU-types as the diagonal of the stiffness
matrix incorporates the scaling (2.3.28) and, thus, annihilates its effect when used for preconditioning.
The same holds true for B-Orth and DKU-Orth. The B-Orth- and P-Orth-types now present perfectly
conditioned stiffness matrices for j = j0 in 1D. The effect carries over quite well to higher dimensions.
The observed increase of the condition numbers for higher levels j > j0 now ideally depends on the
characteristics of the wavelets only. The P-Orth-type exhibits exceptionally good results, although the
numbers of the P-type in 1D are inferior to the other constructions. Yet here the values in 2D and 3D
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seem to be powers of the 1D condition numbers, see Tables 5.5 – 5.7, and, thus, give the lowest absolute
values.
In summary, we see that there is ample room for obtaining absolute small condition numbers for optimized
constructions of wavelets.

J #∆J κ2(AΦj
) κ2(ADKU) κ2(AB) κ2(AB-SVD) κ2(AP)

3 9 2.3221e+02 2.3221e+02 2.3221e+02 6.7509e+01
4 17 9.8139e+02 2.3780e+02 3.5062e+02 1.0521e+02 1.0794e+03
5 33 4.0480e+03 2.5716e+02 3.9257e+02 1.1799e+02 1.0845e+03
6 65 1.6449e+04 2.6705e+02 4.3359e+02 1.3099e+02 1.1909e+03
7 129 6.6319e+04 2.7606e+02 4.6673e+02 1.4128e+02 1.2402e+03
8 257 2.6631e+05 2.8266e+02 4.9278e+02 1.4937e+02 1.2836e+03
10 1.025 4.2736e+06 2.9249e+02 5.3141e+02 1.6130e+02 1.3399e+03
12 4.097 6.8427e+07 2.9924e+02 5.5797e+02 1.6948e+02 1.3761e+03
14 16.385 1.0950e+09 3.0413e+02 5.7698e+02 1.7532e+02 1.4008e+03
16 65.535 1.7521e+10 3.0781e+02 5.9102e+02 1.7963e+02 1.4187e+03

∼ 2J 22J 1 1 1 1

Table 5.2: (Spectral) Condition numbers of 1D stiffness matrices using D−1
1 from (2.2.14) for precon-

ditioning. The value of the parameter for the case B-SVD is optimized as q = 1.41789.

J #∆J κ2(AΦj
) κ2(ADKU) κ2(AB) κ2(AB-SVD) κ2(AP)

3 81 5.3201e+02 5.3201e+02 5.3201e+02 2.1497e+02
4 289 2.4219e+03 6.4240e+02 1.0965e+03 6.9637e+02 1.1437e+03
5 1.089 1.0330e+04 7.8598e+02 1.5029e+03 1.0172e+03 1.3180e+03
6 4.225 4.2652e+04 9.3794e+02 1.8667e+03 1.2812e+03 1.9569e+03
7 16.641 1.7331e+05 1.1070e+03 2.2022e+03 1.5115e+03 2.5998e+03
8 66.049 6.9872e+05 1.2640e+03 2.5249e+03 1.7361e+03 3.1898e+03
9 263.169 2.8058e+06 1.4005e+03 2.8005e+03 1.9266e+03 3.6910e+03
10 1.050.625 1.1245e+07 1.5143e+03 3.0301e+03 2.0853e+03 4.1110e+03
11 4.198.401 4.5025e+07 1.6095e+03 3.2214e+03 2.2173e+03 4.4582e+03
12 16.785.409 1.8018e+08 1.6888e+03 3.3808e+03 2.3272e+03 4.7455e+03

∼ 22J 22J 1 1 1 1

Table 5.3: Condition numbers of 2D stiffness matrices using D−1
1 of (2.2.14) for preconditioning. The

value of parameter q in case B-SVD is optimized as q = 0.9895.

J #∆J κ2(AΦj
) κ2(ADKU) κ2(AB) κ2(AB-SVD) κ2(AP)

3 729 1.2385e+03 1.2385e+03 1.2385e+03 4.2818e+03
4 4.913 5.7509e+03 1.2885e+04 3.4338e+03 2.6037e+05 1.2119e+03
5 35.937 2.5338e+04 2.7003e+04 7.1069e+03 6.8250e+05 1.6603e+03
6 274.625 1.0630e+05 4.4642e+04 1.1601e+04 1.1667e+06 3.0151e+03
7 2.146.689 4.3536e+05 6.3673e+04 1.6556e+04 1.6672e+06 4.6059e+03
8 16.974.593 1.7621e+06 8.2879e+04 2.1188e+04 >2.0e+06 6.1706e+03

∼ 23J 22J 1 1 1 1

Table 5.4: Condition numbers of 3D stiffness matrices using D−1
1 of (2.2.14) for preconditioning. The

value of parameter q in case B-SVD is 1.85. There was no reducing effect observed (compared to B-type)
for any value.
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J #∆J κ2(ADKU) κ2(AB) κ2(AB-Orth) κ2(AP) κ2(AP-Orth)

3 9 2.2872e+02 2.2872e+02 1.0000e+00
4 17 2.4399e+02 2.4399e+02 7.3431e+00 1.0243e+03 1.0000e+00
5 33 2.5497e+02 2.5497e+02 8.9868e+00 1.0508e+03 2.1545e+00
6 65 2.6201e+02 2.6201e+02 1.1113e+01 1.1515e+03 2.9969e+00
7 129 2.6714e+02 2.6715e+02 1.2212e+01 1.2005e+03 3.6346e+00
8 257 2.7075e+02 2.7074e+02 1.3225e+01 1.2424e+03 4.1105e+00
10 1.025 2.7532e+02 2.7532e+02 1.4470e+01 1.2961e+03 4.8232e+00
12 4.097 2.7789e+02 2.7789e+02 1.5258e+01 1.3300e+03 5.2797e+00
14 16.385 2.7939e+02 2.7939e+02 1.5782e+01 1.3528e+03 5.5875e+00
16 65.535 2.8029e+02 2.8029e+02 1.6145e+01 1.3689e+03 5.8064e+00

∼ 2J 1 1 1 1 1

Table 5.5: Condition numbers of 1D stiffness matrices using for preconditioning D−1
a of (3.2.34) and

D−1
{O,a} from (2.3.45) for the cases that include the orthogonal basis transformation.

J #∆J κ2(ADKU) κ2(AB) κ2(AB-Orth) κ2(AP) κ2(AP-Orth)

3 81 5.1949e+02 5.1949e+02 1.8982e+01
4 289 6.2705e+02 6.2705e+02 1.0664e+02 1.0243e+03 2.8084e+00
5 1.089 6.5216e+02 6.5216e+02 1.4229e+02 1.2234e+03 6.4460e+00
6 4.225 6.8300e+02 6.8300e+02 1.8203e+02 1.5235e+03 9.4769e+00
7 16.641 7.0367e+02 7.0367e+02 2.1625e+02 1.8212e+03 1.2958e+01
8 66.049 7.2046e+02 7.2046e+02 2.4572e+02 2.0178e+03 1.6415e+01
9 263.169 7.3363e+02 7.3363e+02 2.6797e+02 2.2319e+03 1.9333e+01
10 1.050.625 7.4451e+02 7.4451e+02 2.8627e+02 2.4054e+03 2.1745e+01
11 4.198.401 7.5366e+02 7.5366e+02 3.0054e+02 2.5463e+03 2.3926e+01
12 16.785.409 7.6162e+02 7.6162e+02 3.1194e+02 2.7773e+03 2.5795e+01

∼ 22J 1 1 1 1 1

Table 5.6: Condition numbers of 2D stiffness matrices using for preconditioning D−1
a of (3.2.34) and

D−1
{O,a} from (2.3.45) for the cases that include the orthogonal basis transformation.

J #∆J κ2(ADKU) κ2(AB) κ2(AB-Orth) κ2(AP) κ2(AP-Orth)

3 729 1.1029e+03 1.1029e+03 3.6268e+02
4 4.913 1.9175e+03 1.9175e+03 1.8235e+03 1.0243e+03 7.8982e+00
5 35.937 2.8338e+03 2.8338e+03 2.6919e+03 2.0611e+03 3.2286e+01
6 274.625 3.3821e+03 3.3821e+03 3.5333e+03 2.4346e+03 4.4821e+01
7 2.146.689 4.0410e+03 4.0410e+03 4.2428e+03 2.8897e+03 6.1539e+01
8 16.974.593 4.6128e+03 4.6128e+03 4.8142e+03 3.3803e+03 8.0971e+01

∼ 23J 1 1 1 1 1

Table 5.7: Condition numbers of 3D stiffness matrices using for preconditioning D−1
a of (3.2.34) and

D−1
{O,a} from (2.3.45) for the cases that include the orthogonal basis transformation.
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5.1.3 The Saddle Point Operator

The saddle point operator LJ is given by (3.1.35). We only consider the case Ω = �2 and Γ = ΓE. The
operator L is indefinite by nature and its condition number κ2(LJ) can actually become smaller than
the one of the operator AJ which it inherits. The actual computed values can be found in Table 5.8 and
Table 5.9. Although this might seem contradictory, for the Schur complement SJ = BJA−1

J BT
J we

have
κ2(SJ) ≤ κ2(AJ)κ2(BJBT

J ) . (5.1.1)

As it was pointed out in Section 3.3.2, κ2(S) determines the convergence speed of the Uzawa type
algorithms Algorithm 3.26 and Algorithm 3.27. The corresponding results can be found in Table 5.11
and Table 5.12. It should be noted that, although the number of unknowns only grows proportional to 2J ,
the complexity of the computation A−1

J x for every vector x is generally O(22J). This inner inversion was
performed computationally with the CG solver. The presence of the inverse operator A−1

J is responsible
for the convergence from above to the limit, e.g., κ2(SB) in Table 5.12.
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Figure 5.3: The trace operators. We show the discretizations of the trace operators γE (first row) and
γW (second row), on the left assembled in the generator basis and on the right in wavelet coordinates on
level j = 4. Due to the extreme sparsity, the wavelet representations do not greatly differ on this level.
More saturated values indicate higher absolute values.

The results of the theoretical ill-conditioning, outlined in (4.2.69), can be found in Table 5.10. The higher
the difference t, the lower is the level j the effect can be observed at.

Iteration Results

We are now going to investigate the efficiency of the Uzawa and CG solvers for a model problem.
Consider Problem 3.14 with the right hand side f ≡ 1 and u ≡ 0 in n = 2 dimensions. In this case, the
exact solution y∗a0

to (3.2.21) in dependence of a0 is

y∗a0
(x1, x2) =

1
a0
−

cosh(
√
a0 x1)

a0 cosh(
√
a0)

. (5.1.2)

Thus, with increasing values of a0, the solution attains y ≈ 1
a0

which tends to zero. For a0 → 0, we
obtain the limit

lim
a0→0

y∗a0
(x1, x2) =

1
2
(1− x2

1) .

We show that the computed solutions are consistent with the theory for this right hand side in Figure 5.4
and Figure 5.5.

The iteration results are presented in Table 5.13 through Table 5.15. There we show the iteration numbers
for a nested iteration scheme for the elliptic boundary value problem (3.2.21) for a0 = 1. The nested
iteration is started with a QR decomposition on the coarsest level j0. Then the respective iterative
solver is used on the higher levels. The conjugate gradient solver 3.25 is applied to the operator LTJLJ
because LJ is indefinite. The Uzawa algorithms 3.26 and 3.27 have to solve an equation of the form
AJxJ = bJ in every step, for which we use the CG Solver. Here the terminating condition of the inner
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iteration is δi = δ/8. All calculations are executed up to a residual error accuracy of 1
100 2−J .

The practical impact of the condition numbers on the iteration schemes can also be observed in these
tables. The higher the absolute values of the condition numbers of the operators are, the higher the
iteration numbers will be. The norm ‖y∗ − y(kJ )

J ‖ in these tables is equivalent to the H1(Ω) norm and
the asymptotic decline of this error proportional to norm of the residual error ‖r(kJ )

J ‖ is clearly visible in
all cases.
The spikes in the CG iteration diagram indicate the prolongation in the nested iteration scheme. These
spikes can be very high because the matrix LTJ+1LJ+1 is not directly an extension of LTJLJ and the
condition numbers are squared when compared to LJ .
The results indicate that substantial improvements in execution costs can be achieved through proper
preconditioning and the basis transformations of Section 2.3.3 . The Uzawa algorithms generally produce
the solution up to discretization error accuracy with fewer iteration steps. The dominating factor for the
cost of the Uzawa algorithms here seems not to be the number of the outer iterations but the number of
internal conjugate gradient steps (#CG-It). This is affirmed by the generally low condition number of
the Schur complement SJ , see Table 5.11 and Table 5.12. The condition numbers of the stiffness matrices
AJ vary much larger in magnitude, see Table 5.3 and Table 5.6. Since the UzawaCD algorithm uses
conjugate directions to calculate the next descent direction, it calculates the solution with fewer steps
than the Uzawa algorithm.
In summary, the UzawaCD algorithm together with the wavelet P-Orth with D{O,a} preconditioner is the
fastest of our test candidates, see Table 5.15. This comes as no surprise because this is the construction
with the smallest absolute value of the condition number of the stiffness matrix. We will use this MRA
and B with Da for comparison in the next section for the numerical experiments with our control problem.
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Figure 5.4: Solutions of the boundary value problem Problem 3.14 for f ≡ 1 and the Dirichlet boundary Γ
as the right facing edge (green), while varying the parameter a0 of the elliptic PDE.
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J #IIH,J κ2(LΦj ) κ2(LDKU) κ2(LB) κ2(LB-SVD) κ2(LP)

3 90 1.1271e+04 1.6182e+02 1.6182e+02 1.2120e+02
4 306 8.9747e+04 3.3627e+02 3.3392e+02 4.7790e+02 3.3110e+02
5 1.122 7.1713e+05 5.0524e+02 4.5946e+02 7.9721e+02 3.8359e+02
6 4.290 5.7350e+06 6.9318e+02 5.7168e+02 1.1202e+03 5.7086e+02
7 16.770 4.5875e+07 9.3544e+02 6.7476e+02 1.3782e+03 7.5665e+02
8 66.306 3.6699e+08 1.1396e+03 7.7374e+02 1.6136e+03 9.2678e+02
9 263.682 2.9359e+09 1.3055e+03 8.5821e+02 1.8098e+03 1.0713e+03
10 1.051.650 2.3487e+10 1.4441e+03 9.2859e+02 1.9682e+03 1.1926e+03
11 4.200.450 >1.0e+11 1.5596e+03 9.8722e+02 2.0978e+03 1.2928e+03
12 16.789.506 >1.0e+11 1.6534e+03 1.0361e+03 2.2046e+03 1.3757e+03

∼ 22J 22J 1 1 1 1

Table 5.8: Condition numbers of 2D saddle point matrices LJ using D−1
1 of (2.2.14) for precondition-

ing. The values for the B-SVD type were selected as q = 1.59 for the 2D transformations and q = 0.92
for the 1D transformations, which produced the best results for this matrix.

J #IIH,J κ2(LDKU) κ2(LB) κ2(LB-Orth) κ2(LP) κ2(LP-Orth)

3 90 1.5806e+02 1.5805e+02 1.8826e+01
4 306 1.9034e+02 1.9023e+02 1.0504e+02 3.8093e+02 4.3877e+00
5 1.122 1.9966e+02 1.9957e+02 1.3996e+02 4.3259e+02 6.9351e+00
6 4.290 2.1118e+02 2.1109e+02 1.8059e+02 4.9442e+02 1.0213e+01
7 16.770 2.3184e+02 2.3174e+02 2.1449e+02 5.6455e+02 1.3956e+01
8 66.306 2.5298e+02 2.5289e+02 2.4407e+02 6.2836e+02 1.7350e+01
9 263.682 2.7063e+02 2.7054e+02 2.6725e+02 6.8222e+02 2.0170e+01
10 1.051.650 2.8549e+02 2.8549e+02 2.8543e+02 7.5436e+02 2.2485e+01
11 4.200.450 2.9587e+02 2.9548e+02 3.0012e+02 7.9262e+02 2.4582e+01
12 16.789.506 3.0514e+02 3.0278e+02 3.1172e+02 8.0243e+02 2.6381e+01

∼ 22J 1 1 1 1 1

Table 5.9: Condition numbers of 2D saddle point matrices using for preconditioning D−1
a of (3.2.34)

and D−1
{O,a} from (2.3.45) for the cases that include the orthogonal basis transformation.
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J #IIH,J t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

3 90 1.6182e+02 1.6280e+02 1.6441e+02 1.6685e+02 1.7038e+02 1.8854e+02
4 306 3.3392e+02 3.3629e+02 3.3983e+02 3.5575e+02 6.0615e+02 1.0410e+03
5 1.122 4.5946e+02 4.6272e+02 4.6754e+02 7.2119e+02 1.4184e+03 2.8118e+03
6 4.290 5.7168e+02 5.7572e+02 6.0231e+02 1.3444e+03 3.0450e+03 6.9545e+03
7 16.770 6.7476e+02 6.7952e+02 9.2786e+02 2.3863e+03 6.2307e+03 1.6370e+04
8 66.306 7.7374e+02 7.7920e+02 1.3912e+03 4.1250e+03 1.2405e+04 3.7493e+04
9 263.682 8.5821e+02 8.6427e+02 2.0211e+03 6.9092e+03 2.3918e+04 8.3119e+04
10 1.051.650 9.2859e+02 9.3515e+02 2.8688e+03 1.1302e+04 4.5017e+04 1.7981e+05

∼ 22J 1 20.2J 20.4J 20.6J 20.8J 2J

Table 5.10: Condition numbers for the saddle point operator Ľ of (4.2.69) using B-type wavelets and the
standard D−1

1 preconditioner. Thus, from left to right, the ill-conditioning increases as the order of the
operator is no longer matched properly by the preconditioner.

J #∆J κ2(SΦj
) κ2(SDKU) κ2(SB) κ2(SB-SVD) κ2(SP)

3 9 1.9674e+01 1.9674e+01 1.9674e+01 1.6209e+01
4 17 4.0547e+01 1.8558e+01 2.8748e+01 1.6293e+01 3.6460e+01
5 33 8.3098e+01 1.7494e+01 2.8068e+01 1.7816e+01 3.0990e+01
6 65 1.6852e+02 1.7089e+01 2.8157e+01 2.0635e+01 2.9275e+01
7 129 3.3953e+02 1.6945e+01 2.8179e+01 2.2207e+01 2.8857e+01
8 257 6.8164e+02 1.6930e+01 2.8186e+01 2.2990e+01 2.8673e+01
9 513 1.3659e+03 1.6981e+01 2.8187e+01 2.3476e+01 2.8647e+01
10 1025 2.7342e+03 1.7054e+01 2.8188e+01 2.3949e+01 2.8632e+01

∼ 2J 2J 1 1 1 1

Table 5.11: Condition numbers for the Schur complement SJ = BJA−1
J BT

J (using the 2D stiffness
matrix) with D−1

1 of (2.2.14) for preconditioning.

J #∆J κ2(SDKU) κ2(SB) κ2(SB-Orth) κ2(SP) κ2(SP-Orth)

3 9 2.0715e+01 2.0715e+01 3.1626e+00
4 17 1.9365e+01 2.1241e+01 7.0851e+00 3.5125e+01 1.5103e+00
5 33 1.8381e+01 1.9475e+01 8.7944e+00 3.0029e+01 2.1803e+00
6 65 1.8030e+01 1.8906e+01 1.0140e+01 2.8328e+01 2.7710e+00
7 129 1.7898e+01 1.8698e+01 1.0873e+01 2.7614e+01 3.2519e+00
8 257 1.7859e+01 1.8700e+01 1.1246e+01 2.7220e+01 3.5551e+00
9 513 1.7848e+01 1.8701e+01 1.1507e+01 2.7109e+01 3.7321e+00
10 1025 1.7844e+01 1.8701e+01 1.1740e+01 2.7051e+01 3.8319e+00

∼ 2J 1 1 1 1 1

Table 5.12: Condition numbers for the Schur complement SJ = BJA−1
J BT

J (using the 2D stiffness
matrix) with the D−1

a and the D−1
{O,a} preconditioner for the cases that include the orthogonal basis

transformation.
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CG : B with D−1
1

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ

4 5.6487e – 04 4.7422e – 03 45
5 3.1043e – 04 3.8214e – 03 113
6 1.4738e – 04 2.0646e – 03 325
7 7.5883e – 05 4.4920e – 04 523
8 3.7548e – 05 3.8146e – 04 243
9 1.9036e – 05 2.4909e – 04 371
10 9.5618e – 06 3.9558e – 05 789
11 5.9958e – 06 2.8246e – 05 360
12 2.4233e – 06 2.7455e – 05 161

CG : P with D−1
1

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ

5 2.8130e – 04 3.0671e – 03 12
6 1.5476e – 04 2.9036e – 03 21
7 7.4634e – 05 2.7491e – 03 38
8 3.7297e – 05 2.3370e – 03 127
9 1.7281e – 05 2.3363e – 03 22
10 8.4102e – 06 2.3336e – 03 43
11 4.8034e – 06 2.3331e – 03 25
12 2.4343e – 06 1.1038e – 05 538

CG : B with D−1
a

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ

4 4.3002e – 04 1.1500e – 02 20
5 2.8184e – 04 1.0260e – 02 26
6 1.3954e – 04 8.3695e – 03 36
7 7.3407e – 05 7.6103e – 03 37
8 3.7124e – 05 5.7727e – 03 72
9 1.9496e – 05 2.3433e – 03 127
10 9.7468e – 06 1.4911e – 03 112
11 4.4289e – 06 6.1467e – 04 134
12 2.4160e – 06 4.6495e – 04 99

CG : P with D−1
a

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ

4 2.4971e – 04 5.0744e – 03 5
5 1.3546e – 04 4.8952e – 03 8
6 6.4746e – 05 4.7220e – 03 11
7 3.8581e – 05 4.5031e – 03 19
8 1.7681e – 05 4.2817e – 03 27
9 9.1325e – 06 4.2256e – 03 23
10 4.0448e – 06 3.7678e – 03 63
11 2.2040e – 06 3.7676e – 03 4

CG : B-Orth with D−1
{O,a}

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ

4 5.1968e – 04 8.8956e – 03 19
5 2.9849e – 04 6.6252e – 03 33
6 1.3916e – 04 5.4242e – 03 40
7 7.0229e – 05 4.5182e – 03 41
8 3.7944e – 05 1.8353e – 03 94
9 1.8049e – 05 1.7032e – 03 43
10 8.9740e – 06 1.4470e – 03 59
11 4.6834e – 06 5.3712e – 04 126
12 2.3927e – 06 4.7899e – 04 63

CG : P-Orth with D−1
{O,a}

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ

5 3.0752e – 04 1.1555e – 03 6
6 1.3496e – 04 4.8133e – 04 9
7 7.4880e – 05 2.8920e – 04 10
8 3.1705e – 05 1.2468e – 04 13
9 1.9246e – 05 7.5909e – 05 13
10 8.9419e – 06 4.1422e – 05 15
11 4.6677e – 06 2.5221e – 05 16
12 1.9952e – 06 1.4810e – 05 18
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Table 5.13: Nested Iteration with conjugate gradient solver in 2D. We show the CG iteration statistics
for different preconditioners applied for the B- and P-type wavelets. The plots show the norm of the
residual in the CG scheme plotted against the overall number of iterations.
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5.1. Numerical Evaluation of the Wavelet Bases

Uzawa : B with D−1
1

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

4 2.0296e – 04 1.6149e – 03 1 43
5 1.8834e – 04 4.3111e – 04 1 83
6 1.5504e – 04 1.8866e – 04 1 107
7 7.4934e – 05 9.4536e – 05 2 99
8 3.7281e – 05 4.8934e – 05 4 94.5
9 1.3394e – 05 1.8290e – 05 4 104.2
10 6.5711e – 06 9.1808e – 06 2 136.5
11 4.3812e – 06 7.6332e – 06 2 54.5
12 2.2016e – 06 3.8892e – 06 4 125.5

UzawaCD : B with D−1
1

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

4 2.0261e – 04 1.6178e – 03 1 59
5 1.8866e – 04 4.3311e – 04 1 83
6 1.5363e – 04 1.8619e – 04 1 107
7 7.3606e – 05 9.3540e – 05 2 96.5
8 3.3588e – 05 6.8745e – 05 1 147
9 6.8239e – 06 1.1969e – 05 3 108.3
10 4.9550e – 06 7.5775e – 06 1 184
11 4.1588e – 06 5.9895e – 06 2 138
12 1.9515e – 06 3.3798e – 06 1 215

Uzawa : B with D−1
a

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

4 1.5858e – 04 2.9582e – 03 1 39
5 1.6689e – 04 9.0077e – 04 1 44
6 1.5146e – 04 3.4334e – 04 1 56
7 7.8024e – 05 1.7061e – 04 2 42
8 2.4297e – 05 9.0301e – 05 4 48
9 1.8020e – 05 5.0470e – 05 5 45
10 8.4589e – 06 2.7610e – 05 2 63
11 3.9417e – 06 9.4177e – 06 3 57.3
12 2.1349e – 06 5.6642e – 06 4 54.2

UzawaCD : B with D−1
a

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

4 1.6290e – 04 2.9763e – 03 1 39
5 1.6649e – 04 8.9899e – 04 1 51
6 1.5115e – 04 3.4439e – 04 1 56
7 2.6663e – 05 1.0652e – 04 3 46.6
8 2.6715e – 05 7.9748e – 05 1 73
9 1.4532e – 05 5.5952e – 05 2 56
10 8.9953e – 06 2.6454e – 05 1 83
11 1.9569e – 06 1.2782e – 05 3 55.3
12 1.1004e – 06 4.6270e – 06 1 99

Uzawa : B-Orth with D−1
{O,a}

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

4 2.1736e – 04 2.0109e – 03 1 17
5 1.7676e – 04 7.5719e – 04 1 23
6 1.1019e – 04 3.1186e – 04 2 25.5
7 6.0302e – 05 1.2500e – 04 2 30
8 3.3219e – 05 7.5304e – 05 2 32.5
9 1.7234e – 05 3.4912e – 05 2 35.5
10 8.9406e – 06 1.8629e – 05 2 39.5
11 4.5679e – 06 9.8691e – 06 2 43
12 2.2233e – 06 5.4892e – 06 2 46

UzawaCD : B-Orth with D−1
{O,a}

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

4 2.2864e – 04 1.9692e – 03 1 17
5 1.8729e – 04 7.2636e – 04 1 23
6 7.4811e – 05 2.9628e – 04 2 24.5
7 3.3135e – 05 1.0026e – 04 1 33
8 2.7375e – 05 7.4556e – 05 1 37
9 8.9554e – 06 3.3004e – 05 2 34
10 2.9872e – 06 1.7632e – 05 1 49
11 3.3246e – 06 1.0837e – 05 1 55
12 1.4526e – 06 2.8286e – 06 1 61
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Table 5.14: Nested Iteration for B-type wavelets and the two variants of the Uzawa algorithm in 2D. The
number of outer iterations kJ depends on κ2(SJ); the average number of inner CG steps (#CG-It) is
determined by κ2(AJ). The plots show the norm of the residual against the steps of the outer iteration.
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Section 5. Numerical Results

Uzawa : P with D−1
1

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

5 3.9524e – 05 7.4145e – 04 1 44
6 2.3067e – 05 2.3722e – 04 1 55
7 1.5911e – 05 8.0410e – 05 1 68
8 2.1835e – 05 9.4294e – 05 1 80
9 7.7497e – 06 3.5843e – 05 1 89
10 8.9384e – 06 1.9734e – 05 1 96
11 3.3437e – 06 1.4435e – 05 3 70
12 1.8742e – 06 2.7474e – 06 3 75

UzawaCD : P with D−1
1

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

5 3.9189e – 05 7.4086e – 04 1 44
6 2.2687e – 05 2.3758e – 04 1 55
7 1.5965e – 05 8.0053e – 05 1 68
8 2.2570e – 05 9.7303e – 05 1 80
9 7.7541e – 06 2.2282e – 05 1 89
10 2.5141e – 06 2.7462e – 05 2 75.5
11 2.1194e – 06 6.3392e – 06 1 102
12 1.6905e – 06 2.9487e – 06 1 108

Uzawa : P with D−1
a

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

5 2.6525e – 05 5.2482e – 03 1 27
6 1.8015e – 05 3.7965e – 04 1 25
7 1.1925e – 05 2.2121e – 04 1 28
8 7.1981e – 06 5.4815e – 05 1 39
9 6.9900e – 06 6.2382e – 05 1 42
10 6.7340e – 06 2.8834e – 05 1 48
11 2.8741e – 06 2.1869e – 05 1 47
12 1.8977e – 06 1.0888e – 05 1 49

UzawaCD : P with D−1
a

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

5 2.6706e – 05 9.7772e – 04 1 27
6 1.7972e – 05 3.7986e – 04 1 32
7 1.1813e – 05 2.0452e – 04 1 36
8 7.0957e – 06 5.3354e – 05 1 39
9 6.9222e – 06 4.7468e – 05 1 42
10 4.5773e – 06 5.2134e – 05 1 48
11 1.8169e – 06 3.1928e – 06 1 47
12 7.861e – 07 2.5546e – 06 2 48

Uzawa : P-Orth with D−1
{O,a}

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

5 3.0839e – 05 4.2243e – 04 1 9
6 2.1386e – 05 1.5717e – 04 1 12
7 1.2937e – 05 5.7105e – 05 1 14
8 7.2229e – 06 2.1973e – 05 1 17
9 3.7761e – 06 8.4314e – 06 1 20
10 2.1157e – 06 3.4671e – 06 1 22
11 9.3078e – 07 8.0748e – 07 1 25
12 4.5284e – 07 5.1167e – 07 1 27

UzawaCD : P-Orth with D−1
{O,a}

J ‖r(kJ )
J ‖ ‖y∗−y(kJ )

J ‖ kJ
#CG-It
kJ

5 3.1228e – 05 4.8165e – 04 1 9
6 2.7074e – 05 1.6185e – 04 1 12
7 1.1496e – 05 5.6115e – 05 1 14
8 6.0063e – 06 2.1205e – 05 1 17
9 3.3574e – 06 8.2464e – 06 1 20
10 1.3615e – 06 3.0685e – 06 1 22
11 6.4769e – 07 1.2522e – 06 1 25
12 2.5721e – 07 3.7431e – 07 1 27
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Table 5.15: Nested Iteration for P-type wavelets and the two variants of the Uzawa algorithm. The setup
as otherwise identical to Table 5.14. Here the nested iteration starts with level 5 because j0 = 4, on this
level the QR decomposition was utilized.
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5.2. Control Problem

5.2 Control Problem

The following numerical experiments will be concerned with the control problem described in Section 4.3.
We will always use the problem setup of Problem 4.20 in weak form and specify the following parameters
to achieve a well-defined problem statement:

• the right hand sides f ∈ (H1(Ω))′, yΓY
∈ H1/2(ΓY ),

• the boundaries ΓY and Γ, fixed by the trace operators B and T ,

• the magnitude of the Sobolev norms in the functional controlled by the parameters s and t,

• the weighting parameter ω in the functional (4.3.1),

• the factor a0 ≥ 0 of the identity part of the elliptic partial differential equation; the coefficients
a(x) = (ai,j(x))i,j := δi,j of the elliptic partial differential equation will not be varied.

We are not only interested in the state y and the control u for a given set of parameters but also in the
impact of the different parameters onto the performance of the numerical schemes.

Remark 5.2

(i) Because of the results of Section 5.1.2 and Section 5.1.3, we focus on the cases of B-type wavelets
with the Da preconditioner and P-Orth-type wavelets with the D{O,a} preconditioner.

(ii) We focus entirely on uniform refinements in our numerical experiments. It is possible with my
software to choose different levels of resolution on the boundaries and the domain using these full
grids, in accordance with the stability condition of Section 3.1.3.

(iii) The execution times given at any instance were measured on a Dell Precision(TM) 670 system
featuring two Intel(R) Xeon(TM) CPU 3.20GHz processors and 2 GB RAM. Although this machine
has 64-bit extensions, these were not used because they did not yield any improvements. The oper-
ating system used was Linux 2.6, the distribution Fedora Core 3.

(iv) All numerical calculations were executed with double precision.

5.2.1 Model Problems

We will now describe the model problems we will be referring to in the next sections.

(P1) For the dimension n = 2, using the right hand sides

f(x1, x2) =
1
2
(1 + 4π2 + (1 + 5π2) cos(πx1)) cos(2πx2),

yΓY
(x2) = cos(2πx2),

leads to the exact solution of the state

y∗(x1, x2) =
1
2

cos(2πx2)(1 + cos(πx1)) . (5.2.1)

The exact observation and control take on the forms

y∗ΓY
(x1, x2) = y|ΓY

(x1, x2) = cos(2πx2), u∗(x2) = y|Γ(x1, x2) ≡ 0 . (5.2.2)

This means that the functional (4.3.1) can be minimized optimally since the norms can attain the
value zero exactly and our calculations should yield the exact solutions stated above. This problem
setup will be used to verify the validity of our theoretical problem formulation with wavelets and to
show the convergence rates of the algorithms set forth in Section 4.4, see Figure 5.6 for a graphic
presentation of the right hand side functions and Figure 5.5 for the solution.
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(P2) The second problem setup shall be the obligatory

f(x1, x2) ≡ 1, yΓY
(x2) ≡ 1 .

These functions can be used easily in any problem dimension n ≥ 2. It is compliant with the problem
statement as the smoothness of the observation satisfies yΓY

∈ H1/2(ΓY ) and the homogeneous
Neumann boundary conditions are satisfied. The analytical solution is not known, though.

(P3) Another example for the dimension n = 2 are the functions

f(x1, x2) =
(
1 + e−10|x1− 1

2 |
)(

1 + e−10|x2− 1
2 |
)

,

yΓY
(x2) = 16x2

2 (x2 − 1)2 .

The right hand side f incorporates a cusp, see Figure 5.7 for the plots of these functions.

(P4) The last example for n = 2 shall be

f(x1, x2) = 1− x1,

yΓY
(x2) =

{
1/2 0 ≤ x2 < 1/2
1 1/2 ≤ x2 ≤ 1 .

Since discontinuous piecewise constant functions are not in H1/2, we cannot expect y|ΓY
to at-

tain this yΓY
exactly. Also, the solution to the boundary value problem in Section 3.2.3 with

f(x1, x2) = 1− x1 is not y(x2) = 1− x2 as this solution does not satisfy the homogeneous Neu-
mann boundary conditions on the observation boundary ΓY , see Figure 5.8 for the plots of these
functions.

We have stressed before that our problem formulation Problem 4.4 is an optimal control problem, i.e.,
a unique solution (y∗, u∗) exists if the right hand side data is compliant with the problem formulation.
Assuming this, we will terminate our solution methods when the residual error is matched to a constant
multiple of the discretization error hJ = 2−J . Since all involved operators are uniformly conditioned
`2-automorphism, we can expect the state yJ = yTJΨ1

Ω ∈ H1(Ω) and the control uJ = uTJΨ1/2
Γ ∈ H1/2(Γ)

also to be determined up to an error of hJ with respect to the exact solution, i.e., we can expect

‖yJ − y∗‖ . hJ and ‖uJ − u∗‖ . hJ , J →∞ .

Of course this is an asymptotic result and might not be observed on low levels j ≈ j0 if the condition
numbers of the involved operators are far greater than 1.
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Figure 5.5: Left: Computed solution of the boundary value problem for f ≡ 1 on level J = 5 and the
trace operator for the facing right edge and a0 = 1.
Right: Plot of the exact solution y∗ for (P1) on level J = 5.
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Figure 5.6: Plot of the right hand side f(x1, x2) = 1
2 (1 + 4π2 + (1 + 5π2) cos(πx1)) cos(2πx2) and

yΓY
(x2) = cos(2πx2) used in problem (P1). The far edge in the left picture is the observation boundary,

indicated by the red color. The facing edge is the control boundary and therefore plotted in green color.
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Figure 5.7: Plot of the right hand side f(x1, x2) =
(
1 + e−10|x1− 1

2 |
)(

1 + e−10|x2− 1
2 |
)

and

yΓY
(x2) = 16x4

2 − 32x3
2 + 16x2

2 of problem (P3) .
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Figure 5.8: Plot of the right hand side f(x1, x2) = 1− x1 and yΓY
(x2) = 1

2χ[0,1/2) + χ[1/2,1] of setup (P4) .
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5.2.2 An Exact Solution – Convergence Rates

We are now going to investigate model problem (P1), for which an exact solution exists. For this part
we use the natural norm equivalences, i.e., RHs(ΓY ) = RHt(Γ) = I, and ω = 1. This means we have by
(4.2.49) the relation u = µ and the Inexact Gradient algorithm will stop when this holds since we then
have reached the unique minimization point of the functional by identity (4.2.52).
We will show that our wavelet discretization yields the correct solution and the algorithms of Section 4.4.1
and Section 4.4.2 calculate the solution up to discretization error accuracy in linear time with respect to
the number of unknowns #IIN ,JN . This is the case since the number of iterations necessary, of the outer
and possibly the inner solvers, are all uniformly bounded.

Remark 5.3 As Figure 5.9 shows, neither incarnation of the matrix N′
4 from (4.4.5) is positive definite

and this holds for all levels. Since the matrix N4 is not symmetric, its eigenvalues are not even real valued.
Thus, the All-In-One Solver described in Section 4.4.1 has to be applied in the form of Corollary 4.22
and (4.4.4) holds for the operator PJ = NT

JNJ .

The iteration statistics for the All-In-One Solver can be found in Table 5.16 and Table 5.17. These
show a nested iteration execution starting with a QR decomposition on the lowest level j0 and then using
the CG Solver for j > j0. The starting vector for these cases was yj0 = 1 in wavelet coordinates. The
stopping criterion for the residual error is 1

1002−J . The total values of the iteration numbers kJ are quite
high because of identity (4.4.4) and the absolute values of the condition numbers of operator NJ , listed
in Table 5.20 and Table 5.21. The last column shows the execution time needed on this level divided by
the number of CG steps. Neglecting all other numeric operations during the CG step, this is roughly the
time needed for one multiplication of the matrix PJ from (4.4.2) or twice the time needed for NJ on the
respective levels. This number grows proportional to the number of unknowns which grows with 2nJ for
uniform refinements in n dimensions.
The results for the Inexact Gradient algorithm are listed in the Tables 5.18 and 5.19. In every step of
the nested iteration the residual r(kJ )

J is computed to an accuracy of δJ := 1
1002−J and the internal solvers

for the primal (4.4.7) and adjoint (4.4.8) systems compute the residual error to below 1
4δJ . The value of

the step size parameter of the Inexact Gradient algorithm was ρ = 0.75 in all these computations. Here
kJ denotes the number of outer iterations, i.e., the number of iterations of the Inexact Gradient
algorithm. The mean number of steps the inner solution algorithm needed to compute the solutions of
the primal (4.4.7) and adjoint (4.4.8) saddle point problems is given in the columns titled #P-It

kJ
and

#A-It
kJ

, respectively. The execution times given in the last column are the mean times which the inexact
gradient spent on the respective level, i.e., the time needed for one step in the gradient scheme. This way
the proportionality of the complexity to the number of unknowns can be observed more easily.
For both solution strategies it holds that the uniform boundedness of the number of iterations and overall
complexity might not be observed on low levels j ≈ j0 if the (qualitatively uniformly bounded) spectral
condition numbers of the involved operators are quantitatively large away from 1. This can be especially
easily observed for the B-type MRA.
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Figure 5.9: Spectrum of N′
4 with Riesz operator R̂Hs . Negative eigenvalues are marked in red color and

positive ones in blue color. The left column shows the spectrum of the matrix N′
4 for the B wavelets and

the right column for the P wavelets. The diagonal preconditioner is chosen in every row as follows: the
standard D1 in the first row, the Da preconditioner in the second and the D{O,a} preconditioner with
the orthogonal basis transformation in the third row.
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The linear convergence rates for the state and control, i.e.,

‖r(kJ )
J ‖ ∼ ‖yJ − y∗‖, ‖uJ − u∗‖ ∼ O(hJ) (5.2.3)

are, nevertheless, recognizable in all examples. The functional value J(y,u) clearly exhibits superlinear
convergence properties here. This is not trivially deducible by definition (4.2.37), since the functional is
not linear in u, not even in the condensed form (4.2.40). However, within the current setting, we can
conclude the following result.

Proposition 5.4 If the optimal solution y∗ = (y∗)TΨ1
Ω ∈ H1(Ω) satisfies the boundary value problem

(4.2.6) with By∗ = u = 0 and additionally Ty∗ = yΓY
, then the value of the functional converges quadrat-

ically, i.e.,
|J(yJ ,uJ)− J(y∗,u∗)| . h2

J .

Proof: We show the quadratic convergence for each term of the functional separately. Because of the
last assumption, we can conclude u∗ ≡ 0 and thus follows for the regularization term

‖R1/2
Ht,JuJ‖

2 = ‖R1/2
Ht,J (uJ − u∗) ‖2 ∼ ‖uJ − u∗‖2 . h2

J

where we used the Riesz operator property (2.2.39). The data fitting term can be estimated by (1.2.25)
as

‖R1/2
Hs,J (TJyJ − yΓY

) ‖2 ∼ ‖TJyJ − yΓY
‖2

∼ ‖TJyJ −TJy∗‖2

= ‖TJ (yJ − y∗) ‖2

. ‖yJ − y∗‖2

. h2
J .

Thus follows the assertion by noting J(y∗,u∗) = 0.

Of course we calculate the value of the functional in our experiments with respect to the finite
approximation yΓY ,J of yΓY

, but the error induced here is also of order O(hJ), which is yields the same
convergence rate of order 2.
In summary, the Inexact Gradient algorithm clearly outperforms the All-In-One Solver. Not only deter-
mines it the solution (yJ ,uJ) in a fraction of the time, it also calculates the solution on any level with a
higher accuracy. The step size parameter ρ determines the convergence speed of the outer iteration and
must be picked carefully. The main cause of long execution times are, nevertheless, the inner solvers for
the saddle point problems. The Uzawa algorithms benefit from the extremely low condition numbers of
the Schur complement SJ , see Table 5.11 and 5.12, and are thus preferred to the CG Solver here.
We are going to discuss more of the numerical properties of the Inexact Gradient algorithm in
Section 5.3. Next, we look deeper into the matter of Riesz operators and their impact on our problem
formulation.
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J ‖r(kJ )
J ‖ J(y(kJ )

J ,u(kJ )
J ) ‖y∗ − y(kJ )

J ‖ ‖u∗ − u(kJ )
J ‖ kJ

Time
kJ

3 – 5.1292e – 03 5.4256e+00 0.0000e+00 – 0.04s

4 5.8956e – 04 1.5192e – 03 1.9636e – 01 9.8632e – 03 149 <0.01s
5 2.7714e – 04 1.3893e – 04 6.2264e – 02 2.0845e – 03 389 <0.01s
6 1.4774e – 04 1.0128e – 04 4.2498e – 02 2.3818e – 03 145 0.02s
7 7.8121e – 05 1.8623e – 05 1.7267e – 02 2.6103e – 04 469 0.07s
8 3.7391e – 05 1.6358e – 05 1.6285e – 02 2.4649e – 04 177 0.28s
9 1.9497e – 05 9.3391e – 07 3.7424e – 03 2.9933e – 04 809 1.11s
10 9.7201e – 06 5.7878e – 07 2.9215e – 03 2.3759e – 04 332 4.27s
11 4.8070e – 06 1.2247e – 07 1.3603e – 03 1.1507e – 05 625 16.50s

∼ ≤ 1
1002−J 2−2J 2−J 2−J 1 22J

Total Execution Time: 3h 32m 32.81s
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Table 5.16: Nested iteration history for the All-In-One solver and B-type MRA with Da preconditioner.
On level j0 = 3 we used the QR decomposition so a residual error is not needed. The mean number of
CG iterations is 386.75 and we used this value for the abscissa of the triangle in the iteration plots. In
the left image, the blue triangle shows the slope of the function which declines exponentially ∼ 2−2x with
every 386.75 steps. The red triangle and the black triangle on the right both show the slope for a decline
proportional to ∼ 2−x.
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J ‖r(kJ )
J ‖ J(y(kJ )

J ,u(kJ )
J ) ‖y∗ − y(kJ )

J ‖ ‖u∗ − u(kJ )
J ‖ kJ

Time
kJ

4 – 2.2217e – 04 2.8043e+00 0.0000e+00 – 4.26s

5 2.7326e – 04 1.4117e – 05 2.2886e – 02 6.8601e – 05 24 <0.01s
6 1.3271e – 04 1.3068e – 06 6.6313e – 03 1.7387e – 05 29 0.02s
7 7.2257e – 05 2.1405e – 07 2.0559e – 03 3.9113e – 06 35 0.08s
8 3.3238e – 05 7.2402e – 08 7.6950e – 04 9.5511e – 07 39 0.28s
9 1.9461e – 05 1.6449e – 09 2.2335e – 04 4.7287e – 07 63 1.17s
10 9.7406e – 06 6.4133e – 10 8.5196e – 05 9.9898e – 08 42 4.58s
11 4.5715e – 06 3.8173e – 10 3.9305e – 05 4.7749e – 08 43 17.71s

∼ ≤ 1
1002−J 2−2J 2−J 2−J 1 22J

Total Execution Time: 17m 50.94s
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Table 5.17: Nested iteration history for the All-In-One solver and P-Orth-type MRA with the D{O,a}
preconditioner. On level j0 = 4 we used the QR decomposition so a residual error is not calculated.
The mean number of CG iterations is 39.28 and we used this value for the abscissa of the triangle in
the iteration plots. In the left image, the blue triangle shows the slope of the function which declines
exponentially ∼ 2−2x with every 39.28 steps. The red triangle and the black triangle on the right both
show the slope for a decline proportional to ∼ 2−x.
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J ‖r(kJ )
J ‖ J(y(kJ )

J ,u(kJ )
J ) ‖y∗ − y(kJ )

J ‖ ‖u∗ − u(kJ )
J ‖ kJ

#P-It
kJ

#A-It
kJ

Time
kJ

3 1.1318e – 04 5.1326e – 03 5.4628e – 01 1.0045e – 02 3 – – 0.18s

4 1.1318e – 04 3.7867e – 02 8.6126e – 01 1.0045e – 02 0 – – –
5 1.1318e – 04 4.7120e – 02 9.0306e – 01 1.0045e – 02 0 – – –
6 1.1318e – 04 4.8889e – 02 9.1217e – 01 1.0045e – 02 0 – – –
7 1.2946e – 05 9.1714e – 08 3.2439e – 03 5.1238e – 05 5 7 7.4 11.99s
8 9.0663e – 06 5.8518e – 09 9.6882e – 04 1.0276e – 05 2 3 3 20.26s
9 1.0067e – 05 3.6600e – 10 3.0640e – 04 3.4016e – 06 1 3 2 84.71s
10 3.1232e – 06 2.4057e – 11 9.7450e – 05 1.1360e – 06 1 4 3 334.21s
11 1.0593e – 06 1.6810e – 12 6.7432e – 06 5.6649e – 07 1 2 1 916.95s

∼ ≤ 1
1002−J 2−2J 2−J 2−J 1 1 1 22J

Total Execution Time: 24m 3.15s
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Table 5.18: Nested iteration history for the Inexact Gradient solver and B-type MRA with Da precon-
ditioner for problem setup (P1) . On level j0 = 3 we used the QR decomposition for solving the primal
and adjoint saddle point systems. The mean number of outer iterations is 10/8 = 1.25 and we used this
value for the abscissa of the triangles in the iteration plots. Thus, the mean value of UzawaCD iterations
for the primal system is thus 5 and 4.9 for the adjoint system.
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J ‖r(kJ )
J ‖ J(y(kJ )

J ,u(kJ )
J ) ‖y∗ − y(kJ )

J ‖ ‖u∗ − u(kJ )
J ‖ kJ

#P-It
kJ

#A-It
kJ

Time
kJ

4 9.6557e – 05 2.2227e – 04 7.9564e – 02 2.8949e – 04 1 – – 1.67s

5 9.6557e – 05 2.9981e – 03 2.9722e – 01 2.8949e – 04 0 – – –
6 9.6557e – 05 3.5819e – 03 3.2906e – 01 2.8949e – 04 0 – – –
7 3.0961e – 05 5.6535e – 08 1.9414e – 03 8.9811e – 06 2 2.5 1.5 1.17s
8 9.0566e – 06 3.5273e – 09 6.1788e – 04 3.0162e – 06 1 2 1 4.62s
9 2.6599e – 06 2.2037e – 10 2.0489e – 04 1.1733e – 06 1 1 1 16.93s
10 1.1861e – 06 1.3961e – 11 6.7546e – 05 3.5632e – 07 1 2 1 74.69s
11 4.7470e – 07 9.3086e – 13 2.5547e – 06 1.3639e – 07 1 1 1 258.74s

∼ ≤ 1
1002J 22J 2J 2J 1 1 1 22J

Total Execution Time: 6m 3.82s
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Table 5.19: Nested iteration history for the Inexact Gradient solver and P-Orth-type MRA with the
D{O,a} preconditioner. On level j0 = 4 we used the QR decomposition for solving the primal and adjoint
saddle point systems. The mean number of outer iterations is 6/7 ≈ 0.85 and we used this value for the
abscissa of the triangles in the iteration plots. So the mean value of UzawaCD iterations for the primal
system is thus 1.83 and 1.16 for the adjoint system. The asymptotic convergence of Order O(hj) for all
algorithm variables in clearly visible in the right plot.

113



Section 5. Numerical Results

5.2.3 Riesz Operators Examined

We now show why it is necessary to introduce Riesz operators in the first place into our problem formu-
lation. Secondly, we show that sufficiently accurate Riesz operators for our control problem are given by
scaled versions of the constructions R̂Hs (2.2.44) and R̃Hs (2.2.53).

Numerical Impact of Riesz Operators

We now investigate the qualitative impact of Riesz operators onto our control problem formula-
tion. It will be illustrative to study Figure 5.10. The first row shows a plot of the state y = y(u) for
problem setup (P2) without a Riesz operator and different diagonal matrices used for preconditioning.
Although these plots show states y(u), which are legitimate solutions within certain constant bounds to
our problem, they are not as smooth as one would expect the solution to be with given right hand sides
f = yΓY

≡ 1.
The second row shows the states y again for different preconditioning operators but using RHs ≈ML2 .
According to (2.2.49), this should be a good approximation for the exact Riesz operator RHs . Yet
the solution depends on the preconditioner, which should not be the case. To explain this, we have
to distinguish between the diagonal preconditioner matrix D ∈ {Da,D1, ...} and the diagonal matrix
D̂+2s = D+2s

1 used in definition of the Riesz operator (2.2.43):
Generally, preconditioning should never alter the computed solution, but only the rate at which this
solution can be obtained. The matrix D̂+2s is part of the model which determines how we measure the
Sobolev norms by weighting the wavelet coefficients differently. Altering this matrix should imply a
noticeable change in the computed solution.
It is easy to see that for a function v = (vs)TΨs ∈ Hs, e.g., with vs := D+s〈v, Ψ̃〉 and v := 〈v, Ψ̃〉, it
holds

‖vs‖2`2 = vTD+sD+sv,

‖M1/2
L2

vs‖2`2 = vTD+sML2D
+sv,

‖R̂1/2
Hs vs‖2`2 = vTD+sD−sD̂+sML2D̂

+sD−sD−sv = vT D̂+sML2D̂
+sv .

Thus, the Riesz operator R̂Hs yields a result independent of the preconditioner D and is, therefore,
preferably the choice for our investigations. The last row in Figure 5.10 shows smooth state functions
independent of the preconditioner.
The choice of a Riesz operator can have quite a significant influence on the spectral condition of the
operator NJ , as can be seen in Table 5.22. A general increase in condition numbers on every level is
recognizable for more involved Riesz operator constructions independent of the utilized preconditioner.
The effect of the Riesz operator onto the Inexact Gradient algorithm for problem setup (P1) is examined
in Tables 5.23 and 5.24. The results show no negative impact on the efficiency of the Inexact Gradient
algorithm. The iteration numbers vary more by their distribution over the levels of the nested iteration
and not much in their magnitude. The overall cost of the Inexact Gradient algorithm stays the same and
is thus much better suited for using different Riesz operator then the All-In-One solver NJ .

Normalization with Respect to Constant Functions

The coherence of the norm equivalences (2.2.50) can be seen from the concrete values of Tables 5.25 and
5.26 for the constant function and the sine function, respectively. These only serve as examples for two
important classes of functions: Constant functions are merely determined by the coefficients of the single
scale basis. In contrast, the (infinitely differentiable) sine function has non-zero wavelet coefficients on
any level j ≥ j0.
Note that the orthogonal basis transformation from Section 2.3.3 constructs the stiffness matrix A′

J

(2.3.44) with very small absolute condition numbers, see Table 5.5, that is,

A′
j ≈ I, for all j ≥ j0 .

Assuming v = vTΨ ∈ H1, we can conclude

‖v‖H1 = ‖ (A′)1/2 D+1v‖`2 ≈ ‖D+1v‖`2 ,
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with probably smaller constants than in the usual equivalence relation ‖v‖H1 ∼ ‖D+1v‖`2 for other
MRAs. The third table in Table 5.25 shows optimal results for constant functions and the third table in
Table 5.26 shows values with error less than 10−2 for the sine function.
The Riesz operator R̂Hs can be improved by a normalization regarding constant functions. Since constant
functions v = c ∈ IR have the same values in the norm of Sobolev spaces Hs for s ≥ 0, i.e., ‖v‖Hs = ‖v‖L2 ,
we should expect this to be reflected by our Riesz operator. As can be seen in Table 5.25, this is not
the case for the operator R̂Hs : the value ‖R̂Hsv‖`2 grows exponentially in s. Exactness for the class of
constant functions can be achieved by a simple normalization factor:
Consider the wavelet expansion of the constant function v = vTΨ ∈ Hs. We then have by definition

‖v‖2Hs = ‖v‖2L2
= vTML2v, (5.2.4)

but it also holds
‖R̂1/2

Hs vs‖2`2 = vT D̂+sML2D̂
+sv . (5.2.5)

As seen in Table 5.26, the matrices D̂+s can have a significant impact on the computed norm.
Now note that the wavelet expansion coefficients of constant functions are exactly zero (the vectors dj
in (2.1.27)), except for the single-scale expansion coefficients of the minimum level j0 (cj0 in (2.1.27)).
Thus, the diagonal preconditioner matrix D̂+s can in this case effectively be written as a scaling of the
identity matrix on the lowest level j0,

D̂+s(cj0 ,dj0 , . . . ,dJ−1)T = 2+j0s Ij0 cj0 = 2+j0scj0 . (5.2.6)

To counter this effect, we introduce a simple scaling factor into our Riesz operator,

qs = 22j0s, (5.2.7)

and define the normalized Riesz operator

˚̂RHs := q−sR̂Hs . (5.2.8)

Thus, the higher the lowest level j0 in the MRA, the worse the Riesz operator R̂Hs fulfills the norm
equivalences of Lemma 2.33. The (for every s) constant factor q−s obviously does not change the spectral
elements of R̂Hs .

The condition numbers of the Riesz operators ˚̂RJ constructed in Section 2.2.6 can be found in Ta-
ble 5.27. As can be seen there, the condition numbers are uniformly bounded for any value of 0 ≤ s ≤ 1.
This normalization will now prove essential in cases of constant traces of the state y and the control
u itself. Consider y|ΓY

, yΓY
and u known to be constant beforehand. Then we must expect the same

solution (y, u) for any Sobolev smoothness indices s, t ≥ 0. In the top row of Figure 5.11, we show the
solution y of our control problem for the right hand sides of (P1) with the Sobolev smoothness parameters
s = t = 0 for the B-type MRA. We used the exact Riesz operator ML2 on both the observation and
the control boundary. As it can be seen, the traces y|ΓY

and y|Γ are exactly constant. The wavelet
coefficient diagrams show the distinctive pattern for constant functions that emerges from the boundary
adapted generators, see (2.3.25). The other three rows of diagrams show the same results for the cases
(s = 0, t = 1), (s = 1, t = 0), (s = 1, t = 1) using the respective exact Riesz operators ML2 and AH1 in
each case. The computed solutions are all identical, which is consistent with constant traces y|ΓY

and
y|Γ. Since this is true for all combinations s, t ∈ {0, 1}, it must also hold for s, t ∈ [0, 1].
In Figure 5.12, we present the computed solution states y for fixed t = 1/2 and selected values s ∈ [0, 3/2]
with the Riesz operator R̂Hs ,R̂Ht for Hs(ΓY ) and Ht(Γ), respectively. The graphic shows the states
moving upward for increasing values of s. When the given observation yΓY

is not constant, such a behavior
is generally expected because y|ΓY

is forced toward yΓY
in a stronger norm.

This moving effect can be explained by the results in the columns for the Riesz operator R̂Hs in Table 5.25.
In case s = 0, the Riesz operator R̂Hs simplifies to the mass matrix ML2 and the values are exact. For
s > 0, the attained term vT R̂Hsv is scaled irregularly with qs. Therefore, the data fitting term in
the functional J(y,u) is weighted with a higher factor for s > 1/2 which emphasizes its importance
supererogatorily. In general, the data fitting term is scaled with a factor qs and the regularization
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term is scaled with qt. For constant traces and observation, we can conclude for the functional (4.2.65)
with the Riesz operators RHs = R̂Hs and RHt = R̂Ht ,

J(y,u) =
1
2
‖R̂1/2

Hs D−1/2+s
ΓY

(Ty − yΓY
)‖2`2 +

ω

2
‖R̂1/2

Ht D−1/2+t
Γ u‖2`2

=
qs
2
‖M1/2

L2
D−1/2

ΓY
(Ty − yΓY

)‖2`2 +
ω qt
2
‖M1/2

L2
D−1/2

Γ u‖2`2 .

Since the functional can be scaled with any positive factor without changing the attained solution, this
can be interpreted as choosing a different weighting parameter

ω′ :=
ω qt
qs

=
ω

qs−t
, ω′ 6= ω for s 6= t .

Numerical experiments confirm that the solution only depends on the value of the difference s − t in
this case for any values of s and t: Figure 5.13 (left side) shows the same solution state for the cases
s− t = 1/2 with ω = 1 and s = t = 1/2 with ω = 1/q1/2 = 1/8.
Here, however, this behavior must be considered incorrect and the solution to this problem is the nor-
malization for constant functions. In Figure 5.13 (right side) we show the state y computed with the

normalized Riesz operator ˚̂RHs ,˚̂RHt for the same scenario of varying smoothness. All computed solutions
are identical. Specifically, they are identical to the solutions for the exact case s = t = 0.
To summarize, we arrive at the following conclusion:

Proposition 5.5 The normalization technique improves the Riesz operator R̂Hs to yield the exact norm
for constant functions for any s ≥ 0. The Riesz map ˚̂RHs inherits from R̂Hs the properties of linear
complexity, exactness for s = 0 and equivalence for s ≥ 0.

Remark 5.6 The Riesz operator R̃Hs of (2.2.53) can also be normalized with respect to constant func-
tions by a simple normalization factor q̃s,

q̃s :=
2−2j0s

(1− s) + s 2−2j0
, 0 ≤ s ≤ 1 . (5.2.9)

We denote the normalized Riesz operator by

˚̃RHs := q̃−sR̃Hs , (5.2.10)

see [11] for details.

For the modelling impact of the Riesz operator constructions and their effectiveness, see Figure 5.14.
There we investigate the accurateness of the different Riesz operators for Problem (P3) with fixed t = 0
and ω = 10−4. The target state yΓY

(x2) = 16x2
2(1− x2)2 is plotted with black color in each graphic.

We anticipate a convergence towards the target state for higher Sobolev indices s because the norm
recognizes not only absolute values but also derivatives, i.e., curvature, for increasing s.
In this example we used the Da preconditioner with the B-type MRA. Thus, in the top row with the Riesz
operator I and ML2 , the coefficients of Da determine the norm equivalence. The middle row incorporates

the Riesz operators R̂Hs and ˚̂RHs . This means effectively that the norm equivalence is now determined
by the operator D1. The normalization factor for ˚̂RHs seems a bit stringent, effectively canceling out the
importance of the parameter s. The normalized interpolating Riesz operator ˚̃RHs in the last row shows
much more accurate results. Specifically, it is exact for integer s.

Remark 5.7 A completely different approach is given by the characterization of Sobolev spaces based
upon Fourier transformation as outlined in Section 1.2. A Riesz operator for Hs is given by the
Gramian matrix with respect to the inner product (1.2.12). This construction is not used here but it
should be considered in the future.

Finally, we can formulate our final remark of this section:

Remark 5.8 These examples show that a perfect Riesz operator does not (yet) exist for fractional Sobolev
spaces. In most applications even using no Riesz operator might be sufficient. Since, however, the exact
Riesz operators for integer smoothness parameters are known, they should be incorporated to attain precise
results. For fractional smoothness parameters, different constructions should be tested.
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J #IIN ,J κ2(NΦj ) κ2(NB) with D−1
a κ2(NB-Orth) with D−1

{O,a}

3 180 4.8096e+04 5.5078e+04 1.4284e+04
4 612 7.2443e+05 1.0841e+05 7.6472e+04
5 2.244 1.1467e+07 1.2573e+05 1.0342e+04
6 8.580 1.8297e+08 1.2512e+05 1.1123e+05
7 33.540 ≈2.9e+09 1.2198e+05 1.1294e+05
8 132.612 >1.0e+10 1.2413e+05 1.1324e+05
9 527.364 —’ ’— 1.2622e+05 1.1347e+05
10 2.103.300 —’ ’— ≈1.27e+05 1.1369e+05

∼ 22J 24J 1 1

Table 5.20: Condition numbers for the operator NJ with the ˚̂RJ Riesz operator for the B-
type MRA with different preconditioners and basis transformations. The values are computed by
κ2 (NJ) =

√
κ2 (NT

JNJ).

J #IIN ,J κ2(NP) with D−1
1 κ2(NP) with D−1

a κ2(NP-Orth) with D−1
{O,a}

4 612 1.1232e+04 2.1948e+04 2.2466e+04
5 2.244 1.7817e+04 4.6474e+04 4.1120e+04
6 8.580 2.3520e+04 5.8008e+04 4.7253e+04
7 33.540 2.7210e+04 6.4409e+04 4.9003e+04
8 132.612 2.9477e+04 6.8140e+04 4.9344e+04
9 527.364 3.0869e+04 7.0448e+04 4.9361e+04
10 2.103.300 3.1743e+04 7.1956e+04 4.9378e+04
11 8.400.900 ≈3.22e+04 7.2623e+04 4.9394e+04

∼ 22J 1 1 1

Table 5.21: Condition numbers for the operator NJ with the ˚̂RJ Riesz operator for the P-type MRA with

different preconditioners and basis transformations. The values are computed as κ2 (NJ) =
√
κ2 (NT

JNJ).
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B with D−1
a

J RJ = I RJ = ML2 RJ = R̂Hs RJ = ˚̂RHs

3 6.4233e+02 1.9598e+03 2.0699e+03 5.5078e+04
4 7.9723e+02 2.5169e+03 2.9799e+03 1.0841e+05
5 8.6385e+02 2.9201e+03 3.5960e+03 1.2573e+05
6 9.2382e+02 3.1572e+03 3.9314e+03 1.2512e+05
7 9.7015e+02 3.2997e+03 4.1260e+03 1.2194e+05
8 1.0108e+03 3.3899e+03 4.2464e+03 1.2413e+05
9 1.0383e+03 3.4498e+03 4.3251e+03 ≈1.26e+05
10 1.0588e+03 3.4914e+03 4.3791e+03
11 1.0740e+03 3.5213e+03 4.4176e+03

∼ 1 1 1 1

P-Orth with D−1
{O,a}

J RJ = I RJ = ML2 RJ = R̂Hs RJ = ˚̂RHs

4 1.0006e+01 3.4643e+01 3.0214e+02 2.2466e+04
5 1.6898e+01 7.6618e+01 3.3192e+02 4.1120e+04
6 2.4689e+01 9.1031e+01 3.1784e+02 4.7253e+04
7 3.5607e+01 9.5867e+01 3.0186e+02 4.9003e+04
8 4.4758e+01 9.7392e+01 2.8970e+02 4.9344e+04
9 5.1437e+01 9.7929e+01 2.8159e+02 4.9361e+04
10 5.6012e+01 9.8258e+01 2.7651e+02 4.9378e+04
11 5.9209e+01 9.8539e+01 2.7354e+02 4.9394e+04

∼ 1 1 1 1

Table 5.22: Impact of the different Riesz operators onto the condition number of the operator NJ for
different constructions of the wavelet bases. The smoothness parameters s = t = 1/2 remain fixed
while the Riesz operator is varied. An increase in condition numbers on every level is recognizable
for more involved Riesz operator constructions (from left to right columns) independent of the utilized
preconditioner.
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Riesz Operator I ML2

˚̂RHs
˚̃RHs

Iterations kJ
#P-It
kJ

#A-It
kJ

kJ
#P-It
kJ

#A-It
kJ

kJ
#P-It
kJ

#A-It
kJ

kJ
#P-It
kJ

#A-It
kJ

j = 3 2 – – 2 – – 1 – – 2 – –
j = 4 3 5.6 5.3 4 3.25 3.75 0 – – 4 2.75 1.5
j = 5 0 – – 0 – – 0 – – 0 – –
j = 6 4 5.75 5.5 4 3.75 5.25 0 – – 4 3.75 1.75
j = 7 0 – – 0 – – 3 5.6 1 0 – –
j = 8 0 – – 0 – – 0 – – 3 4 1
j = 9 3 5.6 5.3 4 4 3.75 5 4.6 0.6 0 – –
j = 10 1 2 1 1 3 2 4 3 0.25 3 3.6 0.6

Overall Sum 13 114 13 100 13 83 16 67

J(y,u) 2.9652e – 11 2.1002e – 11 1.7468e – 11 6.8324e – 12

Table 5.23: Influence of the choice of the Riesz operator onto the Inexact Gradient algorithm for problem
setup (P1) . Here we used the B-type MRA with D−1

a for preconditioning and ρ = 0.5. The stopping
criterion is 1

100hj on every level. The nested iteration starts with the QR-solver on level j0 = 3 and then
the UzawaCD algorithm is used on the higher levels. Left out entries indicate that no iteration steps
were executed.

Riesz Operator I ML2

˚̂RHs
˚̃RHs

Iterations kJ
#P-It
kJ

#A-It
kJ

kJ
#P-It
kJ

#A-It
kJ

kJ
#P-It
kJ

#A-It
kJ

kJ
#P-It
kJ

#A-It
kJ

j = 4 1 – – 1 – – 1 – – 1 – –
j = 5 0 – – 2 1.5 1 0 – – 0 – –
j = 6 2 2 1 0 – – 0 – – 0 – –
j = 7 0 – – 0 – – 0 – – 0 – –
j = 8 2 1.5 1 3 2.6 1.3 0 – – 3 2.3 0.3
j = 9 1 2 1 0 – – 4 2.75 0.25 0 – –
j = 10 1 1 1 1 2 2 5 2 0.2 3 2 0.3

Overall Sum 7 16 7 21 10 23 7 12

J(y,u) 1.5749e – 11 2.1002e – 11 5.1101e – 12 5.6629e – 12

Table 5.24: Influence of the choice of the Riesz operator onto the Inexact Gradient algorithm for problem
setup (P1) . Here we used the P-Orth-type MRA with D−1

{O,a} for preconditioning and ρ = 0.5. The
stopping criterion is 1

100hj on every level. The nested iteration starts with the QR-solver on level j0 = 4
and then the UzawaCD algorithm is used on the higher levels. Left out entries indicate that no iteration
steps were executed.
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Figure 5.10: Plots of the state y for varying preconditioners and Riesz operators. The right hand sides
were set according to (P2) with ω = 1 and s = t = 1/2. In the left column, we have always used D1 as
the preconditioning operator while we have chosen Da for the three images in the right column. From
top to bottom, the Riesz operators change from RHs = I via ML2 to R̂Hs of (2.2.44). This means we
have used effectively no Riesz operator in the first row and only the Riesz operator suitable for L2 in
the middle row. Only the last row shows the same smooth solution independent of the preconditioner.
In every image, the observation boundary is on the far (red) edge and the control boundary on the front
right (green) edge. All solutions were computed using the QR algorithm on NU = F (assembled on level
j = 5) to rule out rounding errors as a cause for the boundary irregularities. The alleged independence
of the solution y with the Riesz operator R̂Hs of the preconditioner is clearly demonstrated.
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Calculated Norm L2

Riesz Operator I ML2

DKU with D−1
1 9.3541e – 01 1.0000e+00

DKU with D−1
a 9.3541e – 01 1.0000e+00

B with D−1
1 9.3541e – 01 1.0000e+00

B with D−1
a 9.3541e – 01 1.0000e+00

B-Orth with D−1
{O,a} 9.3541e – 01 1.0000e+00

P with D−1
1 1.0307e+00 1.0000e+00

P with D−1
a 1.0307e+00 1.0000e+00

P-Orth with D−1
{O,a} 1.0307e+00 1.0000e+00

Calculated Norm H1/2

Riesz Operator I R̂H1/2
˚̂RH1/2 R̃H1/2

DKU with D−1
1 2.6457e+00 2.8284e+00 1.0000e+00 2.0155e+00

DKU with D−1
a 3.0183e+00 2.8284e+00 1.0000e+00 2.2647e+00

B with D−1
1 2.6457e+00 2.8284e+00 1.0000e+00 2.0155e+00

B with D−1
a 3.0183e+00 2.8284e+00 1.0000e+00 2.2647e+00

B-Orth with D−1
{O,a} 9.6671e – 01 2.8284e+00 1.0000e+00 1.0032e+00

P with D−1
1 4.1231e+00 4.0000e+00 1.0000e+00 2.8339e+00

P with D−1
a 4.8195e+00 4.0000e+00 1.0000e+00 3.3400e+00

P-Orth with D−1
{O,a} 1.0152e+00 4.0000e+00 1.0000e+00 1.0004e+00

Calculated Norm H1

Riesz Operator I R̂H1
˚̂RH1 R̃H1/2 AH1

DKU with D−1
1 7.4833e+00 8.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

DKU with D−1
a 9.8361e+00 8.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

B with D−1
1 7.4833e+00 8.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

B with D−1
a 9.8361e+00 8.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

B-Orth with D−1
{O,a} 1.0000e+00 8.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

P with D−1
1 1.6492e+01 1.6000e+01 1.0000e+00 1.0000e+00 1.0000e+00

P with D−1
a 2.2642e+01 1.6000e+01 1.0000e+00 1.0000e+00 1.0000e+00

P-Orth with D−1
{O,a} 1.0000e+00 1.6000e+01 1.0000e+00 1.0000e+00 1.0000e+00

Table 5.25: Norms of the constant function f ≡ 1 in wavelet discretization with various Riesz operators.
The shown results are independent of the level of spatial dimension since all wavelet coefficients are zero
for constant functions. The exact value of ‖f‖Hs is 1 for any of the spaces L2 or Hs, s > 0. The second
column in the middle table and the third column in the last table show that the normed Riesz operator
˚̂RHs yields the same optimal results as the exact Riesz operators for L2 and H1.
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Calculated Norm L2

Riesz Operator I ML2

DKU with D−1
1 7.1638e – 01 7.0709e – 01

DKU with D−1
a 7.1638e – 01 7.0709e – 01

B with D−1
1 7.1634e – 01 7.0709e – 01

B with D−1
a 7.1634e – 01 7.0709e – 01

B-Orth with D−1
{O,a} 7.1634e – 01 7.0709e – 01

P with D−1
1 7.0937e – 01 7.0709e – 01

P with D−1
a 7.0937e – 01 7.0709e – 01

P-Orth with D−1
{O,a} 7.0937e – 01 7.0709e – 01

Calculated Norm H1/2

Riesz Operator I R̂H1/2
˚̂RH1/2 R̃H1/2

DKU with D−1
1 2.0264e+00 1.9999e+00 7.0710e – 01 1.5298e+00

DKU with D−1
a 2.4130e+00 1.9999e+00 7.0710e – 01 1.7538e+00

B with D−1
1 2.0262e+00 1.9999e+00 7.0710e – 01 1.5298e+00

B with D−1
a 2.4128e+00 1.9999e+00 7.0710e – 01 1.7539e+00

B-Orth with D−1
{O,a} 1.1475e+00 1.9999e+00 7.0710e – 01 1.0707e+00

P with D−1
1 2.8375e+00 2.8283e+00 7.0709e – 01 2.0420e+00

P with D−1
a 3.3755e+00 2.8283e+00 7.0709e – 01 2.4042e+00

P-Orth with D−1
{O,a} 1.0662e+00 2.8283e+00 7.0709e – 01 1.0431e+00

Calculated Norm H1

Riesz Operator I R̂H1
˚̂RH1 R̃H1 AH1

DKU with D−1
1 5.7332e+00 5.6569e+00 7.0712e – 01 2.3312e+00 2.3312e+00

DKU with D−1
a 8.1291e+00 5.6569e+00 7.0712e – 01 2.3312e+00 2.3312e+00

B with D−1
1 5.7318e+00 5.6569e+00 7.0712e – 01 2.3312e+00 2.3312e+00

B with D−1
a 8.1291e+00 5.6569e+00 7.0712e – 01 2.3312e+00 2.3312e+00

B-Orth with D−1
{O,a} 2.3595e+00 5.6569e+00 7.0712e – 01 2.3312e+00 2.3312e+00

P with D−1
1 1.1350e+01 1.1313e+01 7.0799e – 01 2.3312e+00 2.3312e+00

P with D−1
a 1.6062e+01 1.1313e+01 7.0799e – 01 2.3312e+00 2.3312e+00

P-Orth with D−1
{O,a} 2.3384e+00 1.1313e+01 7.0799e – 01 2.3312e+00 2.3312e+00

Table 5.26: Norms of the function f(x) = sin(πx) in 1D on level j = 8. The exact value of its L2 norm

is 1√
2
≈ 7.07106e – 01 and that of its H1-norm is

√
1
2 + π2

2 ≈ 2.3312e+00 .
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J #∆J s = 0.0 s = 0.25 s = 0.5 s = 0.75 s = 1.0

3 9 1.9733e+01 2.1118e+01 2.2902e+01 2.5136e+01 2.7883e+01
4 17 2.5478e+01 2.8669e+01 3.3057e+01 3.9036e+01 4.7182e+01
5 33 2.9589e+01 3.4051e+01 3.9893e+01 4.7534e+01 5.7592e+01
6 65 3.1998e+01 3.7074e+01 4.3613e+01 5.2067e+01 6.3093e+01
7 129 3.3446e+01 3.8854e+01 4.5771e+01 5.4673e+01 6.6233e+01
8 257 3.4361e+01 3.9964e+01 4.7106e+01 5.6273e+01 6.8154e+01
9 513 3.4970e+01 4.0695e+01 4.7980e+01 5.7316e+01 6.9399e+01
10 1.025 3.5391e+01 4.1198e+01 4.8579e+01 5.8029e+01 7.0249e+01
11 2.049 3.5695e+01 4.1559e+01 4.9006e+01 5.8535e+01 7.0851e+01
12 4.097 3.5919e+01 4.1825e+01 4.9320e+01 5.8908e+01 7.1293e+01
14 16.385 3.6223e+01 4.2183e+01 4.9742e+01 5.9406e+01 7.1882e+01
16 65.535 3.6413e+01 4.2405e+01 5.0004e+01 5.9714e+01 7.2246e+01

∼ 2J 1 1 1 1 1

1D Riesz operators

J #∆J s = 0.0 s = 0.25 s = 0.5 s = 0.75 s = 1.0

3 81 3.8941e+02 3.8881e+02 3.8882e+02 3.8944e+02 3.9067e+02
4 289 6.4915e+02 6.4958e+02 6.6703e+02 6.9539e+02 7.3445e+02
5 1.089 8.7551e+02 8.4270e+02 8.7823e+02 9.4457e+02 1.0219e+03
6 4.225 1.0239e+03 9.7847e+02 1.0665e+03 1.1875e+03 1.2917e+03
7 16.641 1.1187e+03 1.0937e+03 1.2660e+03 1.4266e+03 1.5296e+03
8 66.049 1.1807e+03 1.2138e+03 1.4608e+03 1.6410e+03 1.7204e+03
9 263.169 1.2229e+03 1.3477e+03 1.6656e+03 1.8198e+03 1.8641e+03
10 1.050.625 1.2526e+03 1.4906e+03 1.8457e+03 1.9623e+03 1.9694e+03
11 4.198.401 1.2741e+03 1.6358e+03 1.9951e+03 2.0733e+03 2.0458e+03
12 16.785.409 1.2902e+03 1.7795e+03 2.1262e+03 2.1585e+03 2.1012e+03

∼ 22J 1 1 1 1 1

2D Riesz operators

Table 5.27: Dependence of the condition number of the Riesz operator ˚̂RHs on the diagonal precondi-
tioner. The table shows the condition numbers of the Riesz operator ˚̂RHs while varying the norm index
s and using Da (with the B-type wavelets) for preconditioning. In the first column (s = 0) ˚̂RHs coincides
with the mass matrix ML2 . If we had chosen D1 for preconditioning, all columns would read like the
first one as the diagonal scalings cancel each other out. Since it only holds Da = Θ(D1), we generally
see a slight increase for ascending values of s. The exact Riesz operator for H1 is the stiffness matrix
AH1 .
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Figure 5.11: Solutions to the control problem with f = yΓY
≡ 1 for the values s, t ∈ {0, 1}. These are

calculated up to discretization error accuracy with nested iteration algorithm and the B-type wavelets.
In these cases, we use the exact Riesz operators ML2 for L2 and AH1 for H1. Therefore, the four states
y shown in the middle column are the exact solutions. These are exactly equal up to the precision that
can be expected by the numerical experiments. On the left and right hand side, we show the wavelet
coefficients for the trace of the state y|ΓY

on the observation boundary ΓY and control u on Γ. White
blocks indicate values equal to zero up to machine precision while blue blocks are zero up to discretization
error. These diagrams show that y|ΓY

and u are constant. This is also emphasized by the value of the
functional J(y,u): in each of these cases, the functional attains the same value, although the norms are
different.
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Figure 5.12: Varying the Sobolev index in the norm of the data fitting term in functional (4.3.1) for
Problem (P2) with the Riesz operator R̂Hs . The other parameters are chosen as ω = 1 and t = 1/2.
Higher values of s indicate stronger norms which should not make a difference in this case. Without the
normalization factor, y|ΓY

is forced more strongly towards yΓY
≡ 1 for increasing values of s and the

solution generally shifts upwards.
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Figure 5.13: Left: Solution states for the control problem 4.20 and (P2) with the Riesz operator R̂Hs

with DKU wavelets. The parameter values (s = 1, t = 1/2, ω = 1), (s = 1/2, t = 0, ω = 1) and
(s = 1/2, t = 1/2, ω = 1/8) all yield the same solution displayed here.
Figure 5.13: Right: Varying the Sobolev index in the norm of the data fitting term in functional (4.3.1)

for Problem (P2) with the normalized Riesz operator ˚̂RHs . The other parameters are chosen as ω = 1
and t = 1/2. The solutions are all identical for any value of s.
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Figure 5.14: Traces of the solution states y on the observation boundary ΓY for varying smoothness
indices s and fixed smoothness parameter t = 0 for Problem (P3) with ω = 10−4. Here we used the
B-type wavelets with Da preconditioner. The top left picture depicts the case of incorporating no Riesz
operator. Introducing the mass matrix ML2 (top right) does not change the solution significantly but
the trace norm is in this case exactly evaluated for s = 0. The middle left picture corresponds to the case
where the diagonal matrix D1 is used as the weighting operator for the wavelet coefficients. In the middle
right diagram the normalization factor qs is included. For the bottom left the normalized interpolating
Riesz operator ˚̃RHs is used. Thus, for s = 0 and s = 1 the exact norms are evaluated in the numerical
experiments.
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5.3 Further Numerical Experiments

5.3.1 Robustness of the Inexact Gradient Scheme

We are now going to investigate some of the properties of the Inexact Gradient Algorithm 4.25.

Convergence Speed Subject to ρ

The step size parameter ρ is the key parameter for ensuring and improving the convergence of the
Inexact Gradient algorithm. It is known by Theorem 4.26 that for convergence the step size ρ can
only be chosen in a limited range of values depending on the problem parameters. We show the iteration
numbers of the outer iteration for setup (P3) with ω = 1 and the ˚̃RHs Riesz operator with s = t = 1

2
in Tables 5.28 and 5.29. The nested iteration starts with a QR-decomposition on level 4 to calculate a
starting vector of 1

1002−j0 precision. The UzawaCD algorithm is then used to reduce the error by a factor
of 2 on every level. The results clearly indicate that the overall number of iterations (which determines
the overall complexity) has a minimum for ρ = 1 in this case. The optimal value for the problem setup
(P1) is empirically found to be ρ = 3

4 .

ρ = 1
100 ρ = 1

20 ρ = 1
10 ρ = 1

4 ρ = 1
2 ρ = 3

4 ρ = 1 ρ = 5
4 ρ = 4

3 ρ = 41
30

j = 3 192 39 19 8 4 2 4 12 24 44
j = 4 373 78 40 18 0 0 0 0 0 0
j = 5 302 69 35 14 7 5 0 15 28 45
j = 6 286 50 19 10 5 5 6 0 0 0
j = 7 251 44 45 10 0 4 2 10 15 8
j = 8 247 59 27 12 7 0 2 0 0 0
j = 9 297 62 31 12 0 4 2 0 11 15
j = 10 296 63 33 12 7 3 2 4 4 5

Overall Sum 2244 464 249 96 30 23 18 41 84 117

Table 5.28: Iteration numbers of the Inexact Gradient algorithm employing the nested iteration strat-
egy of Problem (P3) with the B-type MRA with Da preconditioner. We used the QR decomposition on
level j0 = 3 and the UzawaCD algorithm for the higher levels. The algorithm did not converge for ρ = 7

5 .

ρ = 1
100 ρ = 1

20 ρ = 1
10 ρ = 1

4 ρ = 1
2 ρ = 3

4 ρ = 1 ρ = 5
4 ρ = 4

3 ρ = 41
30

j = 4 236 47 23 9 4 3 5 14 30 55
j = 5 232 52 31 13 0 0 0 0 0 0
j = 6 284 86 48 20 11 0 0 15 25 31
j = 7 320 65 32 13 7 6 0 6 8 10
j = 8 355 68 30 14 7 5 7 0 6 7
j = 9 351 72 33 11 0 4 2 7 6 0
j = 10 343 56 25 12 10 4 2 5 3 5

Overall Sum 2121 446 222 92 39 22 16 47 78 108

Table 5.29: Iteration numbers of the Inexact Gradient algorithm employing the nested iteration strat-
egy of Problem (P3) with the P-Orth-type MRA with D{O,a} preconditioner. We used the QR decompo-
sition on level j0 = 4 and the UzawaCD algorithm for the higher levels. The algorithm did not converge
for ρ = 3

2 .
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The algorithm clearly proves to be more stable with respect to the step size parameter bounds (4.4.15)
at the lower bound. Very small values of ρ imply long convergence times while too high values cause the
program to interrupt abnormally because the residual becomes infinite, i.e., larger than 1.79769e+308
for double precision data structures. Also, the convergence is of almost equal complexity for a range of
values, here ρ ∈ [ 12 ,

5
4 ] provides almost the same quality of convergence. In these two cases, the qualitative

effectiveness of the step size parameter ρ is identical for our problem although this cannot be guaranteed
since the bounds in (4.4.15) depend on properties of the selected MRA.
A good strategy for determining the step size parameter is testing several values for ρ on the lowest level
and determining a good value by binary searching. This value can then be used in the nested iteration
because the convergence speed of the step size parameter is largely, i.e., asymptotically, independent of
the level of resolution.
Another case study of this kind is given in Table 5.32 for a different setup.

Convergence Speed with Extreme Values of ω

The admissible range of values for the step size parameter ρ depends by Theorem 4.26 not only
on the quantitative properties of the involved operators in the wavelet discretization but also on the
value of the weighting parameter ω.
The case ω � 1 forces the control towards u ≡ 0 for any norm in the functional (4.3.1). This means that
the state y = y(u) is determined by the elliptic boundary value problem (3.2.1) with u = 0. Thus, the
control problem is very well-posed in the sense that the solution is easily determined. The case ω � 1
is more interesting because the control is less penalized and this can have a considerable impact on the
solution state y(u). In the limit, ω ≡ 0, the control problem is no longer well-posed because the control u
can effectively become very unsmooth, e.g., u /∈ L2(Γ) is possible.
We show the iteration numbers for values ω � 1 for setup (P2) in Table 5.30. The best iteration numbers
are observed for ρ = 2ω. Since the solution to (P2) with ω = 0 is y ≡ 1, whereby the data fitting term
attains exactly zero, we expect and observe

J(y,u) =
ω

2
12 for ω → 0 .

Since the magnitude of the step size parameter ρ also has an impact on the tolerances εy(i+ 1, JH) and
εµ(i + 1, JH) of Theorem 4.26, these have to be chosen stricter for ω → 0. Thus, the complexity of the
numerical scheme grows proportionally with the exponent of the parameter ω, i.e., the inner iteration
numbers of the Uzawa algorithms grow with ω approaching zero. Convergence speed is nevertheless
optimal, i.e., the number of iterations is uniformly bounded.
In the case ω � 1 (cf. Table 5.31) the algorithm converges very quickly and stable since u ≡ 0 is being
attained. The solution y(u) is then determined by (5.1.2) for a0 = 1. The functional therefore converges
towards

J(y,u) =
1
2

(
1

cosh(1)

)2

≈ 2.09987e – 1 .

The overall complexity grows when deviating from the optimal value of the step size parameter. The
experiments in Tables 5.30 and 5.31 show that one can choose at least values with a relative tolerance
of 50% for ρ and still have good performance. The absolute size of the interval of admissible step sizes,
however, is reduced significantly.
In summary, losing the well-posed problem formulation for ω = 0 cannot be undone by any means. The
Inexact Gradient algorithm still converges for ω � 1 although the step size parameter ρ must be chosen
proportional to the weighting parameter ω here. The numerical complexity also increases because the
residual tolerances must also be chosen proportional to ω. Since with optimal preconditioned system
matrices the residual error can be reduced by any constant factor with a uniformly bounded number
of steps, this effect does increase the number of steps by a constant. The whole algorithm is still of
optimal complexity. This changes if ω approaches machine precision ε = 2.2204e – 16. At this point
the numerical scheme must break down because numerical results can never be obtained better than
machine precision. In the computer system, the parameter ω is then simply indistinguishable from the
value zero.
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ω = 10−6

Step size ρ 1 10−6 2 10−6 3 10−6

Iterations kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

j = 3 31 – – 10 – – 13 – –
j = 4 10 7.3 6.7 3 8.3 7.3 4 8.25 7.75
j = 5 3 6.6 4.6 2 6.5 5 2 7.5 4.5
j = 6 3 7.3 4 0 – – 0 – –

Residual Error 1.0351e – 04 1.0994e – 04 1.3478e – 04

J(y,u) 4.9999e – 07

ω = 10−5

Step size ρ 1 10−5 2 10−5 3 10−5

Iterations kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

j = 3 27 – – 9 – – 12 – –
j = 4 10 7.2 6.5 3 7.6 7.3 4 8.25 7.25
j = 5 3 7 4.6 0 – – 0 8 7.3
j = 6 3 7 4 2 9 6.5 3 – –

Residual Error 1.0159e – 04 1.2947e – 04 5.3074e – 05

J(y,u) 4.9998e – 06

ω = 10−3

Step size ρ 1 10−3 2 10−3 3 10−3

Iterations kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

j = 3 18 – – 7 – – 8 – –
j = 4 10 7.4 6.7 3 7 6 4 8.25 7.75
j = 5 3 6.6 5 0 – – 2 8 7
j = 6 3 7.3 4.3 0 – – 2 8 6.5

Residual Error 1.0406e – 04 1.4632e – 04 4.9586e – 05

J(y,u) 4.9881e – 04

Table 5.30: Iteration numbers of the Inexact Gradient algorithm for varying values of ω with the B-type
MRA using Da and right hand sides of (P2) . The nested iteration starts with the QR decomposition for
the saddle point matrices on level j0 = 3, then the UzawaCD algorithm is used.
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ω = 10+3

Step size ρ 0.5 1 1.5

Iterations kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

j = 3 1 – – 1 – – 1 – –
j = 4 2 0.5 0.5 1 1 1 2 1 0.5
j = 5 0 – – 1 1 1 0 – –
j = 6 2 1.5 0.5 1 3 1 2 1.5 0.5

Residual Error 7.9413e – 05 1.3809e – 07 7.8965e – 05

J(y,u) 2.0977e – 01

ω = 10+6

Step size ρ 0.5 1 1.5

Iterations kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

j = 3 1 1 1 1 1 1 1 1 1
j = 4 1 1 1 1 1 1 1 1 1
j = 5 1 1 1 1 1 1 1 1 1
j = 6 1 1 1 1 1 1 1 1 1

Residual Error 1.5902e – 07 3.4202e – 10 1.5812e – 07

J(y,u) 2.0997e – 01

ω = 10+9

Step size ρ 0.5 1 1.5

Iterations kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

kj
#P-It
kJ

#A-It
kJ

j = 3 1 1 1 1 1 1 1 1 1
j = 4 1 1 1 1 1 1 1 1 1
j = 5 1 1 1 1 1 1 1 1 1
j = 6 1 1 1 1 1 1 1 1 1

Residual Error 1.5902e – 10 3.4250e – 13 1.5812e – 10

J(y,u) 2.0997e – 01

Table 5.31: Iteration numbers of the Inexact Gradient algorithm for varying values of ω with the B-type
MRA using Da and right hand sides of (P2) . The nested iteration starts with the QR decomposition
for the saddle point matrices on level j0 = 3, then the UzawaCD algorithm is used. Here the overall
complexity stays almost constant when choosing other step sizes.
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5.3. Further Numerical Experiments

5.3.2 Parameter Studies

We now present some results about the impact of our model parameters onto the solution states and
control. Due to the vast number of possible combinations for tweaking the parameters a0, ω, s, t and the
Riesz and Trace operators we only show some selected results to present a certain anticipated effect. The
numerical results concerning the Sobolev smoothness indices s, t are presented in Section 5.2.3.

Varying the Weight ω

The summands in the functional J (y, u) (4.3.1) can be weighted with respect to each other by
the parameter ω. In applications, the value of ω is usually chosen to be very small, e.g., ω = 10−6. This
means the emphasis is laid on state y being forced towards yΓY

in the Hs-norm while the control can
take on very high values in the Ht-norm. Thus, especially if the control is measured in a weak norm,
i.e., t < 1/2, it can become very unsmooth, depending on the right hand side f in the PDE (4.3.2).
In Figure 5.15 we show this effect for Problem (P2) . As ω approaches zero, the control problem becomes
ill-defined as the coupling between the primal and adjoint system is weakened. Since the control and
the state are constant (cf. Section 5.2.3), we see an increase in the absolute value of the control u for
ω → 0. The control u is no longer penalized in the functional J(y,u) and can take on values far from
zero. The state approaches the exact solution y ≡ 1 of Problem 4.11 for f ≡ 1 and yΓY

= u ≡ 1. For
ω � 1 the control is penalized with a higher weight and must achieve lower values in the norm. In the
limit, the state y is therefore determined with the control u being zero. As such, the state converges
toward the solution of the unconstrained boundary value problem L(y,p)T = (f ,0)T , which can be seen
in Figure 5.5.
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Figure 5.15: Dependence of the solution state y for Problem (P2) of the weighting parameter ω of the
functional (4.3.1).

Another case study of the parameter ω for a different setup can be found in Figure 5.17.

Varying the Parameter a0 in the PDE

The parameter a0 in the constraint elliptic boundary value problem controls the impact of the mass
term versus the Laplacian. To understand the effects when changing its value in the control problem, it
is beneficial to understand the effects for the boundary value problem Problem 3.14. We focus on the
case f ≡ 1 here, so the exact solution for the boundary value problem is given by (5.1.2).
Considering now the problem setup (P2) of our control problem, it is clear that for a0 →∞ the state y
must behave like ∼ 1

a0
. Thus, the absolute value and the curvature of the solution state y tends towards
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zero. We depict this study in Figure 5.16 for ω = 1/5 and s = t = 1/2 and the ˚̂RHs Riesz operator. This
means that the control u is allowed a

√
5 times higher norm (which, thus, determines this as its value).

For a0 > 1 the solution state y moves towards y ≡ 0. In this case, the control u can attain higher values
because of the value of ω and, thus, the surfaces bend upwards. For a0 < 1, the solution takes on values
of higher absolute value because the curvature is increasing and ω < 1.
Obviously, this parameter also has an impact on the condition number of the stiffness matrix AJ and
the saddle point operator LJ . This means that the step size parameter ρ of the Inexact Gradient
algorithm must be adapted accordingly to each a0. We show the iteration number for this setup in
Table 5.32. There the solutions are calculated with the B-type wavelets and Da preconditioner up
to 1

1002−j in each iteration. The iteration is started with the QR solver on level j = 3 and then the
Uzawa algorithm is used on the higher levels.
The results indicate that the algorithm converges quickest when the value of ρ satisfies a0/ρ ≈ const.
The upper bound for the step size ρ can be observed clearly; the algorithm does not converge any more.
The lower bound is indicated by increasing iteration numbers, which ultimately should result in an
infinite number of steps needed to obtain the solution as ρ→ 0.

The Trace Operators

So far, we have changed neither the observation boundary ΓY nor the control boundary Γ in our
problem setup. Obviously, only two different choices are interesting to consider: We have already
extensively addressed the case of boundaries at opposite sides of the domain. We are now going to
investigate the case of adjacent boundaries.
We now choose for the observation boundary the south boundary ΓY = ΓS. Since control and observation
share the point (1, 0), the solution is forced to attain values close to the observation yΓY

and close to 0
at the same time. This problem setup incorporates a dilemma if yΓY

(1, 0) 6= 0.

We depict this case in Figure 5.17 for problem setup (P2) with the P-type wavelets using the ˚̃RHs Riesz
operator for s = t = 1/2. The weighting parameter ω is varied from 10−4 to 101. For very small values
of ω the control can attain values far from zero and the solution converges towards y ≡ 1. For values
ω ≈ 1 the above mentioned dilemma is visible in form of a spike at the point (1, 0). Using higher values
ω � 1 results in an overweighting of the control and, thus, the solution state tends towards zero just as
before (cf. Figure 5.15).
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Figure 5.16: Solution for the control problem with f = yΓY
≡ 1 and ω = 1/5 and s = t = 1/2. For a0 > 1

the solution state y moves towards y ≡ 0. For a0 < 1 the solution takes on values of higher absolute
value because the curvature is increasing and ω < 1.

a0 = 1
100 a0 = 1

10 a0 = 1
2 a0 = 1 a0 = 2 a0 = 5 a0 = 10 a0 = 100

ρ = 1
200

j = 4
j = 5
j = 6

134
138
139

133
134
980

129
204
682

223
337
1235

516
721
795

817
879
752

904
1010
667

0
401
429

ρ = 1
20

j = 4
j = 5
j = 6

12
13
15

13
14
93

9
20
24

22
34
136

52
72
79

81
87
75

90
100
67

0
40
43

ρ = 1
4

j = 4
j = 5
j = 6

0
3
3

0
2
2

0
0
15

4
7
15

10
14
15

16
17
15

17
19
13

0
8
9

ρ = 1
2

j = 4
j = 5
j = 6

–
–
–

–
–
–

–
–
–

0
5
6

0
0
0

0
0
9

0
8
7

0
0
5

ρ = 1
j = 4
j = 5
j = 6

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

2
2
2

2
2
2

2
0
2

Table 5.32: Iteration numbers for the Inexact Gradient algorithm for Problem (P2) with fixed ω = 1/5,
cf. Figure 5.16, on levels 4 through 6. Left out entries indicate that the algorithm did not converge, i.e.,
the residual error tends towards infinity.
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Figure 5.17: Solution states of Problem (P2) for adjacent control and observation boundaries and different
values of ω. The observation boundary ΓY is pictured in red color and the control boundary Γ in green
color.
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5.3.3 Future Considerations

We are going to briefly touch a few topics which should be considered in the future.

Changes in the Geometry

The current setting allows a change of the domain by the fictitious domain approach outlined in
Section 3.2.1. Another possibility for different setups include trace operators which act only on a part of
the faces and edges of the domain �n, see Figure 5.18 for an example for the boundary value problem.
Such constructions would better accommodate real life applications, e.g., modelling the heat transfer in
a water basin where the heater can only cover a small part of the boundary area.
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Figure 5.18: Solution to the boundary value problem with f ≡ 1 and u ≡ 0 on Γ = ( 1
4 ,

3
4 ) calculated on

level j = 5.

3D Problems

The complete setup of Section 4.3 was done independent of the dimension n. We focused primar-
ily on the case n = 2 because this is the easiest to visualize. Now we shall consider problem (P2) in
three dimensions and test the Inexact Gradient method on this problem. Recall from Section 5.2.2
that this has turned out to be the most efficient iterative solution method.
In Tables 5.33 and 5.34, we show the iteration results for the Inexact Gradient algorithm with ρ = 0.75
with the stopping criterion of 1

100hJ = 1
1002−J on every level. Since in 3D even on very small levels

j = 3, 4 the resulting system matrices have 103 − 104 number of rows and columns, we use only the
UzawaCD algorithm in the nested iteration. Recall also that the number of unknowns and the complexity
grows exponentially like 23J .

J NJ ‖r(kJ )
J ‖ |J(y(kJ )

J ,u(kJ )
J )− J(y∗,u∗)| kJ

#P-It
kJ

#A-It
kJ

Time
kJ

3 1.701 1.0129e – 03 2.2286e – 04 6 9.0 5.2 0.9s
4 10.693 2.0818e – 04 1.9259e – 05 5 8.4 0.4 6.2s
5 74.151 9.4074e – 05 2.6159e – 06 5 13.2 1.8 91.6s
6 561.925 6.3949e – 05 1.9533e – 06 5 12.6 1.0 710.6s
7 4.342.789 2.0094e – 05 3.9370e – 07 5 15.0 0.4 5964.0s

Table 5.33: Iteration histories for (P2) in 3D. Here the B-type MRA with Da and the UzawaCD solver
is utilized. The stopping criterion for the residual error is 10−2hJ .

The uniform boundedness of the iteration numbers is clearly demonstrated. The time required on every
level to reduce the error by a factor of 2 grows proportional to 23 as expected. Here, as before, the or-
thogonal basis transformation with the P-type MRA exhibits better numerical properties when compared
to the B-type wavelets with the diagonal of the stiffness matrix preconditioner.
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J NJ ‖r(kJ )
J ‖ |J(y(kJ )

J ,u(kJ )
J )− J(y∗,u∗)| kJ

#P-It
kJ

#A-It
kJ

Time
kJ

4 10.693 1.6139e – 04 1.6635e – 05 8 3.1 1.5 0.5s
5 74.151 1.4530e – 04 6.4201e – 06 5 2.8 0.2 3.6s
6 561.925 9.8076e – 05 1.4213e – 06 5 2.8 0.2 32.8s
7 4.342.789 3.0278e – 05 5.1901e – 07 6 3.6 0.5 336.8s

Table 5.34: Iteration histories for (P2) in 3D. Here the P-Orth-type MRA with D{O,a} and the
UzawaCD solver is utilized. The stopping criterion for the residual error is 10−2hJ .

Nonsmooth Data and Adaptivity

Problem setup (P4) has been designed with an inherent flaw: the target observation yΓY
is not in

H1/2(ΓY ). Therefore, the setup is ill-defined by construction. Specifically, piecewise constant but
globally discontinuous functions are in the spaces Hs, s < 1/2. Since we allow coarser norms in our
data fitting term in the control functional, this problem should manifest itself when we let the Sobolev
smoothness parameter s tend to 1/2. Of course we can still choose the parameter s ∈ [0, 1] freely since
the expansion yTΓY ,J

Ψs
ΓY

is only a finite dimensional approximation of yΓY
and, thus, continuous,

but the norm of the gradient will be very high.
The non-regularity of the problem data embodies itself during computations through higher iteration
numbers of the Inexact Gradient algorithm, see Table 5.35. The results clearly show that the overall
complexity of the algorithm increases, albeit only by a small constant factor over all levels. The problem
is still solved in optimal complexity. The observation target and the traces of some computed solutions
on the observation boundary are depicted in Figure 5.19.

Up to this point, throughout this thesis, we have only investigated linear techniques with full grids. This
is a problem for high dimensional problems n > 2 because the computer power and memory requirements
grow exponentially like 2nJ . Adaptivity in the wavelet context for nonsmooth data or singularities in
the domain can be achieved by best N−term approximations choosing N indices which minimize the
approximation error. Such methods are much more involved and we will only show that our problem
setup could benefit from adaptive methods for nonsmooth data.
Adaptivity is generally advised if the functions in our control problem are composed of smooth and rough
parts. Then adaptive methods provide wavelet indices primarily for the rough parts of the functions. This

s = 0.0 s = 0.1 s = 0.2 s = 0.3 s = 0.4 s = 0.45 s = 0.475
j = 4 16 17 19 20 22 22 23
j = 5 22 23 23 23 23 24 24
j = 6 12 12 12 12 13 13 13
j = 7 11 11 12 12 12 13 13

s = 0.5 s = 0.6 s = 0.7 s = 0.8 s = 0.9 s = 1.0
j = 4 23 25 26 28 29 30
j = 5 24 24 25 25 26 27
j = 6 14 15 15 18 21 24
j = 7 12 15 14 15 16 30

Table 5.35: Iteration numbers for the (P4) with P-Orth-type MRA and the D{O,a} preconditioner for

increasing smoothness order in the data fitting term. Here we used ω = 1
4 and ρ = 1

8 and the ˚̃RHs

Riesz operator. We use the QR-decomposition for the saddle point problems on level j0 = 4 and the
UzawaCD algorithm on the higher levels.
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strategy can be extremely successful when dealing with control problems with elements of dual Sobolev
spaces, see [11]. Although our solutions y ∈ H1(Ω) and u ∈ H1/2(Γ) have minimal guaranteed smooth-
ness, solutions of partial differential equations often exhibit singular phenomena like cusps, especially if
the domain is not convex and has corners.
For our setup, we present the wavelet coefficients for a case where the observation has a spike in Fig-
ure 5.20. For such cases, adaptive methods are known to produce results up to a certain error with fewer
computational complexity, see [6]. The theoretical background on adaptive methods for linear-quadratic
elliptic control problems is given in [28] and experiments have been conducted in [11].
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Figure 5.19: Target state and computed states on the observation boundary ΓY with the ˚̃RHs Riesz
operator. The asymmetry is due to the fact that the center generator on each level is being associated
to the right part of the interval.
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Figure 5.20: An observation yΓY
(x2) = 1 + exp(−50 |x2 − 1/2|) and its wavelet coefficients diagram.
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6 Résumé and Outlook

In this thesis I have presented the numerical realization of the theoretical framework on elliptic PDE-
constrained control problems given in [47] and several additional features and improvements for the prac-
tically relevant case of Dirichlet boundary control. It is demonstrated that the natural norm equivalences
made available by wavelet methods are an excellent tool for the treatment of fractional Sobolev norms
arising in this case of boundary control. I have shown that the amount of computational work in a nested
iteration scheme is proportional to the total number of unknowns of the involved linear systems. That
is, the condition numbers of the linear operators are uniformly bounded with absolute small constants
and sufficiently accurate solutions can be obtained with iterative solvers within a uniformly bounded
small absolute number of iterations. The Inexact Gradient algorithm 4.25 proves to be numerically
preferable to the All-In-One Solver (4.4.1).
In summary, the theoretically predicted convergence of the inexact gradient scheme is confirmed for all
setups for which the problem is well-posed. We observe uniformly bounded iteration steps over all levels
of resolution when the step parameter ρ is chosen within certain bounds predicted by the underlying
theory.
I have also developed effective, yet inexpensive, basis transformations aimed at further reducing the
condition numbers of the stiffness matrix and operators constructed around it. The actual benefit depends
highly on the characteristics of the wavelets itself, but their principle can be applied to most wavelet
constructions in the same fashion.
Furthermore, I have shown the numerical effect of introducing Riesz operators into the problem state-
ment. Although they are not widely regarded as a central ingredient in the modelling process of a
particular problem, I have given an example where not using Riesz operators leads to wrong results.
By the means of the Riesz operators the standard norm equivalences between the `2-norm of weighted
wavelet coefficients and Sobolev spaces Hs, s ∈ IR, can be sharpened significantly. Riesz operators should
therefore always be utilized if a particularly precise evaluation of a Sobolev norm is needed.
Lastly, I have presented numerical experiments which show the interrelation of the various problem
parameters. Due to the vast amount of possible combinations of the parameter set, it was not possible
to test all parameter variations and their effects on the modelling and on the numerical schemes. Rather
I set the focus on the investigation of some specific exemplary cases which exhibit a certain (anticipated)
effect. Specifically, the smoothness parameters s and t can induce a certain change in the state and
control which cannot be achieved with fixed norm indices varying only the weighting parameter ω.
There are still some instances to improve the results given in this thesis. First, the Inexact Gradient
algorithm could be replaced by an Inexact CG algorithm which would relegate the need to explicitly
choose values for the step size parameter ρ. This should result in a general performance gain in the nested
iteration scheme.
Secondly, wavelet constructions can further be improved for their use in numerical analysis. It was
demonstrated in Section 5 how a small specialized basis transformation can have a tremendous reduc-
tion effect on the condition numbers of the involved operators. Also, the tensor product construction of
Section 2.4 is not ideal in the sense that degrees of freedom are unnecessarily distributed evenly on the
whole domain Ω. Adaptive wavelet methods as proposed in [18,28] would only insert wavelet coeffi-
cients locally to obtain the solution within a desired accuracy tolerance. Meanwhile, the computational
work stays proportional to the number of essential, e.g. non-zero, wavelet coefficients which can be lower
by several orders of magnitude than the cardinality of unknowns in the uniform discretizations used in
this thesis. The theory of adaptive wavelet discretizations has been brought forward to the matter of
linear-quadratic, elliptic control problems in [28]; a first adaptive implementation was carried out in [11].
The Riesz operator constructions should generally be of further interest for numerical analysis. As it is
not possible to create one (exact) Riesz operator for Hs, additional constructions should be carried out
and tested for numerical applicability.
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A Software Documentation

A.1 General Information

The software was written completely in C++ . It relies extensively on the Standard Template Li-
brary and uses the Matrix Template Library [54] as a backend for memory management for matrix
and vector operations. Additionally, we used the very neat Singleton and Factory classes of the Loki
library, available from [51], and the threading code was implemented using the Common-C++ (see [15])
library. The source code of these libraries can be found at the websites referenced in the bibliography.
The software was developed and executed using several flavors of the Linux operating system. Although
all source code is available, it might not compile or run on other Unix r© and Microsoft r©Windows r© sys-
tems.
The software is distributed under a controlled open source license. Access to the software is given after
the license agreement has been accepted in written form. For more information, see

http://www.iam.uni-bonn.de/∼pabel/ .

I would like to emphasize that this software is not meant to be a general wavelet code library nor is this
an official release. It is just distributed ”as is” without any warranty.

A.2 Source Code Structure

The complete program is separated into several subdirectories and many files. The directory structure is
as follows

./ main directory; holds the configure scripts;

./src source root directory; holds the problem classes which implement the system
matrices’ multiplication routines;

./src/diagassemble source code of a helper program which assembles the diagonal of the stiffness
matrix and saves it to disk for later use;

./src/loki the Loki library source files. These are included since they are not common
among the system libraries of a Linux distribution. The library consists al-
most completely of template classes and is compiled in where needed. The
documentation to this library can be found in the excellent book [2];

./src/problems here the source code of anything related to a problem’s implementation can
be found. This includes right hand side objects, solvers and action object
definitions;

./src/psgen source code of a helper program which visualizes the absolute values of the
wavelet coefficients in a nice diagram;

./src/wavelets holds all low level classes like the implementation of the wavelet transforms
and operators like the stiffness matrix and the diagonal preconditioners. The
entire source is split into several C++ namespaces to ease management of the
different MRA types;

The results published in this paper were achieved by compiling the program with gcc-3.4.x and the
following extra compiler options :

-O3 -g0 -fno-exceptions -funroll-loops -frerun-loop-opt

On the following pages, we show the major classes of the software modules and describe their functions
and the most important parts of their interfaces. This documentation is not meant to be complete. It
serves to give any interested reader an introduction into the structure of the program to allow for dealing
with the software.
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Section A. Software Documentation

Helper Classes (Path ./src/wavelets)
Files/Classes/Functions Comments

Namespace Wavelets
wavelets.h forward declarations and global typedefs

typedef {double,float} FP TYPE defines the global floating point data type
typedef mtl::dense1D<FP TYPE> Vektor a normal vector type
typedef mtl::matrix<FP TYPE>::type Matrix a general rectangle matrix type

typedef unsigned int length t
typedef unsigned int level t
typedef unsigned int dim t

type of variables denoting lengths (of vec-
tors), (refinement) levels and (spatial) di-
mensions

typedef MultiIndex<length t> lengths t
typedef MultiIndex<level t> levels t
typedef MultiIndex<levels t> levels array t

types for saving the levels and lengths of a
TensorVektor and an ExtendedVektor

enum TRANSFORM MODE {NORMAL, TRANSPOSED} flag for matrix multiplication
enum WAVELET PRECOND {NONE, FIRST, LAST} flag for signaling the fast wavelet transform

to apply the diagonal preconditioner
enum TRANSFORM ORDER
{ASCENDING, DESCENDING}

flag for order of fast wavelet transform

typedef TensorVektorT<FP TYPE> TensorVektor definition of the TensorVektor class

tensorvektor.h
template<typename T> class TensorVektorT class that holds a Vektor instance and pro-

vides means (accessors, iterators) for ten-
sorized matrix and vector computations

template<typename T> class SubTensorVektorT class that holds only pointers to its
data but is otherwise as functional as a
TensorVektorT<T>

extendedvektor.h
class ExtendedVektor holds several TensorVektors and provides

transparent access for all numeric and ad-
ministrative functions; an ExtendedVektor
is a system vector, i.e. UJ and FJ in
(4.2.61).

multiindex.h
template<typename T> class MultiIndex data structure to store a multi-index of

type T and provide functions like | · |
template<typename NumT, typename ConT>

class CompressedVektor
class for vectors whose values are almost
identical for a contiguous range; only stores
the value once together with the number of
recurrences; used for Da of (3.2.34)

timediff.h
class TimeDiff
class TimeDiffSimple

class for recording the user and system ex-
ecution times of the current process and all
its’ children

vektorproxy.h
public VektorProxy proxy class for TensorVektor; will return

an object only when demanded explicitly
class InstanceVektor : public VektorProxy
class FileVektor : public VektorProxy
class NoVektor : public VectorProxy

return a copy of a previously given instance;
data read from a file; or will stop execution
upon requesting the data
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A.2. Source Code Structure

Tensor Functions and Operators (Path ./src/wavelets)
Files/Classes/Functions Comments

Namespace Wavelets
tensorfunction.h

struct EmptyType {} an empty class; used as placeholder
struct LowerDimensionsFirst
struct HigherDimensionsFirst

policy objects which control in what order
the tensorfunction applies to the data

template<typename
payload = EmptyType
typename tensor = SubTensorVektor
typename dimensionPolicy =

LowerDimensionsFirst>
class TensorFunction

the base class of tensorized functions,
e.g. a function that is aware of the
tensorized structure of the data and can
make use of this information; it can
be configured by the template parame-
ters, i.e. for the information it needs (the
payload); TensorFunctions can be ten-
sorized and added, thus easily imitating the
structure (2.4.15)

void operator()( tensor* STV,
payload = payload() )

the apply method

template<typename payload = EmptyType
typename tensor = SubTensorVektor
typename dimensionPolicy =

LowerDimensionsFirst>
class WavTensorFunction :
public TensorFunction<payload, tensor,

dimensionPolicy>

derived class specifically designed for use
with the Wavelet class; examples include
the fast wavelet transform FWT and ba-
sis transformations matrices

wavelet.h
struct FWTPayload payload type for the FWT; this includes the

values for the levels and the mode
class FWT : public WavTensorFunction<

struct FWTPayload>
base class for all wavelet transform classes

void operator()(
SubTensorVektor* STV,
TRANSFORM ORDER o,
TRANSFORM MODE m,
FLAG f )

this apply operator takes as arguments the
vector to work on, the order (de- or ascend-
ing), the mode and a flag; this operator is
also used for prolongation and restriction in
the sense of (2.1.11) by supplying the cor-
rect arguments

struct BasisTraFoPayload payload type for basis transformations of
type shown in Section 2.3.3

class BasisTraFo : public
WavTensorFunction<
struct BasisTraFoPayload>

base class for all basis transformation
classes

void operator()(
SubTensorVektor* STV,
level t j,
TRANSFORM MODE m )

the arguments are the vector to work on,
the level of the transformation and the
mode

struct OperatorPayload holds only a TRANSFORM MODE value
class Operator : public TensorFunction<

struct OperatorPayload>
base class for operators (i.e. the single-scale
mass matrix)

void operator()(
SubTensorVektor* STV,
TRANSFORM MODE m )

this apply method only takes an extra mode
argument to be put in the payload
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Section A. Software Documentation

Operators and Preconditioners (Path ./src/wavelets)
Files/Classes/Functions Comments

Namespace Wavelets
operators.h

class SpecialOutputPolicy dimension policy object for OutputToFile
class

class OutputToFilePayload payload type which holds information
about the file and the coordinates

class OutputToFile :
public TensorFunction<
OutputToFilePayload,
SubTensorVektor,
SpecialOutputPolicy>

an object that writes a TensorVektor to
file; writes one entry of the form

x y z ... value
per line to file; data of this form can be
displayed easily by programs like gnuplot
and Mathematica

wavelet.h
class DiagPrecondPayload holds data that is necessary for execution of

a diagonal preconditioner, i.e. the exponent
value

class DiagPrecond base class for all implementations of diago-
nal preconditioners like Da and D1

void operator()( SubTensorVektor* STV,
double o, FP TYPE f = 1. )

the arguments are the data to work on, the
order (exponent) and optionally a constant
multiplicative factor

preconditioners.h holds the implementations of all precondi-
tioners

class DiagPowerPrecond :
public DiagPrecond

intermediate base class for all implementa-
tions of diagonal preconditioners based on
power of 2, e.g. D1

class DiagP2Precond : public DiagPrecond implementation of D1

class DiagP2ModPrecond :
public DiagPrecond

modified implementation of D1, e.g. scal-
ing mimics the diagonal of stiffness matrix
preconditioner

class DiagSMPrecond : public DiagPrecond implementation of Da; the actual values
are read from a file which was created by
the DiagAssemble target and saved in the
CompressedVektor format
this class is also used in the construction
process of the CompressedVektor data and
for saving it to disk

class HybridPrecond : public DiagPrecond hybrid preconditioning implements differ-
ent preconditioners for data of different spa-
tial dimensions, i.e. D1 for all 1D data and
Da for all 2D data; combinations can lead
to different condition numbers for example
for the operator LJ
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A.2. Source Code Structure

Riesz and Trace Operators (Path ./src/wavelets)
Files/Classes/Functions Comments

Namespace Wavelets
rieszoperator.h

class RieszOperator interface class for all Riesz operator imple-
mentations

void setOrder(double s) sets the order of Riesz operator, e.g. the
desired Sobolev space regularity

void operator()(
TensorVektor* TV ) const

computes R TV and saves the result in the
same vector

void Solve( TensorVektor* TV ) const computes R−1 TV and saves the result in
the same vector

class Identity : public RieszOperator this class performs no operations in its’
methods; acts as if no Riesz operator was
used

class GramMatrix : public RieszOperator applies the mass matrix, see (2.2.49);
works as the L2 Riesz operator

class PowerDiagScale :
public RieszOperator

implements the Riesz operator R̂Hs , see
(5.2.8)

class NormedPowerDiagScale :
public RieszOperator

implements the Riesz operator ˚̂RHs , see
(2.2.44)

traceoperator.h implementation of the trace operators
class TraceOperator interface class for all trace operator objects

void operator()(
TensorVektor* output,
const TensorVektor* input,
TRANSFORM MODE T )

apply operator which calculates
output = B(T ) input

class East : public TraceOperator
class West : public TraceOperator
class North : public TraceOperator
class South : public TraceOperator

implementation of the trace operators onto
the edges of the unity cube; see (3.2.22) and
(3.2.23)
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Section A. Software Documentation

Wavelet Class Interface (Path ./src/wavelets)
Files/Classes/Functions Comments

Namespace Wavelets
wavelet.h

class Wavelet interface class for all wavelet flavors
level t getMinimumLevel() const returns j0

length t singleScaleQuantity(
level t j) const

returns #∆j

length t multiScaleQuantity(
level t j) const

returns #∇j

length t dimSingleScaleQuantity(
const levels t& j) const

calculates #∆�
j , see (2.4.1), for the multi-

index j
length t dimMultiScaleQuantity(

const levels t& j) const
calculates #∆�

j+1 −#∆�
j

void direct(TensorVektor* output,
const TensorVektor* input,
TRANSFORM ORDER O = ASCENDING,
TRANSFORM MODE M = NORMAL,
WAVELET PRECOND P = FIRST,
double s = 1.) const

interface method to the FWT and
DiagPrecond classes; this method ap-
plies the standard diagonal scaling and
the fast wavelet transform in the specified
modes; default arguments calculate
output = TD−1 input
regardless of the dimension of the input
data

void inverse(TensorVektor* output,
const TensorVektor* input,
TRANSFORM ORDER O = DESCENDING,
TRANSFORM MODE M = TRANSPOSED,
WAVELET PRECOND P = LAST,
double s = 1.) const

analogon for the inverse FWT:
output = D1T−T input

= D1T̃ input

void applyStiffnessMatrix(
TensorVektor* TV) const

when called, will apply the single-scale
stiffness matrix (as shown in (2.4.16));
the correct structure of TensorFunctions
is automatically created for the dimension
of the input data

void applyMassMatrix(
TensorVektor* TV) const

computes the single-scale product of the
mass matrices, cf. (2.4.11)

void applyInverseMassMatrix(
TensorVektor* TV) const

computes the inverse of the above function

void prolongate(TensorVektor* TV) const prolongates the vector (given in wavelet
coordinates) to the next levels by insert-
ing empty data at the correct memory ad-
dresses

void restrict(TensorVektor* TV) const restricts the vector (given in wavelet coor-
dinates) by deleting data

void exportValues(TensorVektor* V) const transfers the vector from the current single-
scale basis to the nodal basis

void importValues(TensorVektor* V) const imports a vector of coefficients given in the
nodal basis into the single-scale basis
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A.2. Source Code Structure

Wavelet Implementations (Path ./src/wavelets)
Files/Classes/Functions Comments

Namespace Wavelets::Wavlet P 24 3 CDFBASE
wavelet p 24 3 cdfbase.h holds all classes for the implementation of

the wavelets described in Section 2.3.2; the
different ”flavors”(B and DKU) only differ
in the definition of four constants, which are
saved in the files listed below

class Wavelet P 24 3 cdfbase :
public Wavelet

implementation of the Wavelet interface for
the Wavelet construction of [19]; uses the
classes listed below f

class SM : public Operator class implements the 1D single-scale stiff-
ness matrix

class MM : public Operator class implements the 1D single-scale mass
matrix

class iMM : public Operator class implements the 1D single-scale inverse
of the mass matrix

class dFWT : public FWT
class iFWT : public FWT

implementation of the fast wavelet trans-
form and its inverse;

class TransformToNodalBasis :
public BasisTraFo

class TransformFromNodalBasis :
public BasisTraFo

basis transformation objects; the primal
generator basis is not the nodal ba-
sis here; this simple basis transforma-
tion performs the changes; also used in
importValues()/exportValues()

class dGeneratorOrthogonalizer :
public BasisTraFo

class iGeneratorOrthogonalizer :
public BasisTraFo

these classes implement the orthogonaliza-
tion of the generator basis with respect to
the operator −∆ + I on the minimum level
j0, see (2.3.44)

class dTransC : public BasisTraFo
class iTransC : public BasisTraFo

the SVD based basis transformation, see
(2.3.37)

wavelet p 24 3 dku.h
class Wavelet P 24 3 dku :

public Wavelet P 24 3 cdfbase

wavelet p 24 3 cb.h

Namespace Wavelets::Wavlet P 24 3 CQBASE
wavelet p 24 3 cqbase.h

class Wavelet P 24 3 cqbase :
public Wavelet

wavelet p 24 4 mp.h
class Wavelet P 24 4 mp :

public Wavelet P 24 3 cqbase

these files hold the implementation of the
wavelet construction of Miriam Primbs, see
[56]
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Section A. Software Documentation

Problem and Action Descriptions (Path ./src/problems)
Files/Classes/Functions Comments

Namespace Wavelets::Problems
actions.h

class Action
void operator() (LinearProblem* WP)

interface definition for all action imple-
mentations; Actions implement algorithms
that can work on an instantiation of the
LinearProblem class

class NoOp : public Action Executes nothing, program will exit nor-
mally

class Solve : public Action when applied, solves the equation described
by the problem with an exact or iterative
solver

class NestedIteration : public Action uses nested-iteration to solve the system
of equations; a different solver (i.e. a differ-
ent Solve object) can be used for any step
of the iteration

class Assemble : public Action assembles the system matrix in a Matrix
object by multiplying all unit vectors; can
save the resulting matrix to file (either as
values, in a Matlab spy mode or Mathemat-
ica compatible format)

class Condition : public Action computes the spectral condition of the sys-
tem matrix by power iteration and inverse
power iteration (optionally with spectral
shifting)

class EigenValues : public Action computes the eigenvalues of a symmet-
ric problem matrix by assembling the ma-
trix with Assemble and reducing it to
a tri-diagonal form then applying QR-
decomposition and multiplicative disposi-
tion
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A.2. Source Code Structure

Problem Implementation Descriptions (Path ./src/problems)
Files/Classes/Functions Comments

Namespace Wavelets::Problems
implbase.h

class Problem base class for all problems, linear or not
void exec() must be implemented in the derived class

and will be called upon execution

class LinearProblem : public Problem base class describing the interface for all
linear problems. derived classes can do
command line option parsing, but have to
construct a LinearImplementation which
does the real work

LinearProblemImplementation* Impl() the derived class must supply an instance
of an LinearImplementation derived class;
this object will be used by the Action ob-
jects on page 146

class LinearProblemImplementation base class for linear problems. A linear
problem is a system equation like (4.4.1) or
(3.1.35) of which the system matrix must be
implemented in the corresponding derived
class

void operator()(
ExtendedVektor* output,
const ExtendedVektor* input,
TRANSFORM MODE mode ) const

method that must implement the system
matrix multiplication (and the transposed
multiplication for non-symmetric matrices)

class SaddlePointProblemImplementation :
public LinearProblemImplementation

this class specifies an interface that is neces-
sary to make use of the Uzawa algorithms
(Algorithm 3.26 and Algorithm 3.27)

void applyStiffnessMatrix()(
ExtendedVektor* output,
const ExtendedVektor* input ) const

method that must implement the stiffness
matrix multiplication

void applyLagrangeMatrix()(
ExtendedVektor* output,
const ExtendedVektor* input,
TRANSFORM MODE mode ) const

method that must implement the Lagrange
matrix multiplication

class StiffnessMatrixProblem :
public LinearProblem

during the execution of the Algorithm 3.26
algorithms, this class is used to handle the
multiplication with the inverse of the stiff-
ness matrix

class StiffnessMatrixProblemImplementation
: public LinearProblemImplementation

implements the inversion of the stiffness
matrix
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Section A. Software Documentation

Right Hand Sides (Path ./src/problems)
Files/Classes/Functions Comments

Namespace Wavelets::Problems
rhs.h

class RightHandSide objects of this kind can fill a TensorVektor
for use as a right hand side function

void create( const Wavelet* W,
TensorVektor* TV ) const

main function which fills the TensorVektor
object and transforms the vector
into the wavelet expansion of the
specified Wavelet instance; will use
Wavelet::importValues() and the
Wavelet::direct() interface, if necessary

class NoRHS :
public RightHandSide

acts as a placeholder object until a proper
RightHandSide object is available; will
stop the program, if asked to serve data

class GivenVektor :
public RightHandSide

will save TensorVektor object and return
a copy of it upon request

class NumericFunction :
public RightHandSide

class that holds a Function object and will
use this to fill a vector with the values of
that function

class Function interface definition for an object that rep-
resents a real-valued function of the unity
line, square, etc...

void create(TensorVektor*) const method that must implement the creation
of a TensorVektor object with the expan-
sion coefficient of a real-valued function ex-
panded in the nodal basis

class Zero : public Function fills the vector with zeros

class Const : public Function fills the whole vector with a constant value,
works for any dimension; implements f and
yΓY

for Problem (P2)

class Linear : public Function implements a function of the form mx+ b

class Cos2Y : public Function implements the function cos(2πy), used in
yΓY

of Problem (P1) ; can only be used for
1D

class CosX2CosY : public Function implements the function
1
2 (1 + 4π2 + (1 + 5π2) cos(πx)) cos(2πy),
used as f of Problem (P1) ; can only be
used for 2D

class ExpAbs : public Function implements functions of the form
c+ e−f |y−

1
2 |,

and tensorproducts thereof; used for both
yΓY

and f in Problem (P3)

class Skip : public Function implementation of a discontinuous, but oth-
erwise constant, function
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A.2. Source Code Structure

Solvers (Path ./src/wavelets)
Files/Classes/Functions Comments

Namespace Wavelets::Solver
solvers.h holds several algorithms for solving linear

equations
class ExactSolver exact solvers are only used on very small

levels since they require large amounts of
memory (for the system matrix) and time

void operator()(
Matrix* M,
ExtendedVektor* lsg,
ExtendedVektor* rhs )

algorithm will compute the solution of the
equation M x = rhs and save the result in
the vector lsg

class LU : public ExactSolver the LU decomposition
class QR : public ExactSolver the QR decomposition

class IterativeSolver base class for all iterative solvers, which
manages statistics (i.e. changes in the norm
of the residual in course of the calculations)

class LinearProblemSolver :
public IterativeSolver

base class for all solvers specifically de-
signed to solve LinearProblems

void operator()(
LinearProblem* WP,
ExtendedVektor* lsg,
ExtendedVektor* rhs,
FP TYPE tol,
VektorProxy* sol )

algorithm will compute the solution of the
equation M x = rhs up to the prescribed
tolerance tol and save this in the vector
lsg; during execution, the computed solu-
tion can be compared to the (exact) solu-
tion sol, if it was supplied

class CG : public LinearProblemSolver implementation of Algorithm 3.25

class CG DH : public LinearProblemSolver a different implementation of Algo-
rithm 3.25, written according to [34]

class SaddlePointProblemSolver :
public IterativeSolver

base class for all solvers specifically de-
signed to solve SaddlePointProblems

void operator()(
SaddlePointProblem* SPP,
ExtendedVektor* lsg,
ExtendedVektor* rhs,
FP TYPE tol,
VektorProxy* sol )

the algorithm will compute the solution
of the equation M x = rhs up to the pre-
scribed tolerance tol and saves this in the
vector lsg; during execution, the computed
solution can be compared to the (exact) so-
lution sol, if it was supplied

class Uzawa :
public SaddlePointProblemSolver

implementation of Algorithm 3.26

class UzawaCD :
public SaddlePointProblemSolver

implementation of Algorithm 3.27
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Section A. Software Documentation

Problem Descriptions (Path ./src)
Files/Classes/Functions Comments

Namespace Global ::
controlproblem.h

class ControlProblem :
public LinearProblem

implementation of the problem described in
Section 4.3

CPImpl : public LinearProblem base class for the following real implemen-
tations; does storage tasks

class AllInOne :
public CPImpl

class MatMultNBase
class MatMultNLower : public MatMultNBase
class MatMultNUpper : public MatMultNBase
class CPThread : public ost::Thread

implementation of the All-In-One Solver
method of Section 4.4.1; the resulting ma-
trix multiplication of the matrix NJ (4.4.1)
is swapped out and split up into the
MatMultNUpper and -Lower classes to sup-
port multithreading

class CoupledSP :
public CPImpl

class SPBase :
public SaddlePointProblemImplementation

class PrimalSP :
public SPBase

class AdjointSP :
public SPBase

implementation of the problem
of Section 4.3 using the coupled-
saddlepointproblem approach of Sec-
tion 4.4.2; the systems (4.4.7) and
(4.4.8) are implemented as indepen-
dent SaddlePointProblems and can be
configured differently, e.g. for different
solvers

class CSPSolver :
public IterativeSolver

implements the Inexact Gradient algo-
rithm, Algorithm 4.25

bdryvalueprob.h
class BoundaryValueProblem :

public LinearProblem
implementation of the problem outlined in
Section 3.2.3; used for testing purposes

class BVPImpl :
public SaddlePointProblemImplementation

implementation of the system matrix
(3.1.26)

class SchurComplement :
public LinearProblemImplementation

implementation of the Schur comple-
ment (3.2.15)

testproblem.h
class TestProblem has no special meaning, incorporates only

test and trial code

Problem Descriptions (Path ./src/diagassemble)
Files/Classes/Functions Comments

Namespace Global ::
diagassemble.h

class DiagAssemble
class DASig
class DAThread : public ost::Thread

assembler.h
normal.h
signature.h

assembles the diagonal of the stiffness ma-
trix Da; this can either be done sequentially
by using all unity vectors or by honoring
the repetitive structure of the wavelet dis-
cretization and the tensorproduct construc-
tion; execution can be carried out in multi-
ple processes simultaneously
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A.3. Command Line Options

A.3 Command Line Options

A.3.1 controlproblem

The general structure is as follows:

./controlproblem <ProblemName> --op <Action> --level <I,J> --dim <N> [ other options ]

Irregular command line options will be ignored silently. The ProblemName parameter can be the name
of the class or one of the following abbreviations:

BoundaryValueProblem BVP
ControlProblem CP

The mandatory command line options are :

--level comma separated list of positive integers

--dim positive integer, most likely 1,2 or 3

--op name of a class derived from class Action listed on page 146

Depending on the problem and the operation, many more command line options are recognized.

Common options: --normal apply system matrix twice on each application
--load-start ilename of starting vector for solvers
--no-fwt do not use wavelet transform and preconditioners

MRA options --mra type of the MRA to use, see Section 5.1
--prec Preconditioner, e.g., P2, SMD
--SMDiag-path path to pre-calculated diagonals of the stiffness matrix
--btf BasisTransformation, e.g. Orth, SVD

ControlProblem --omega value of the parameter ω, default 1
--f a name of a Right Hand Side object, see page 148
--y specifies yΓY

--T order of the norm on the observation bdry, default 1/2
--ObsB name of observation boundary, default ”West”
--B order of the norm on the control boundary, default 1/2
--CoB name of control boundary, default ”East”
--CoBRieszOp type of the Riesz operator to use for the control
--ObsBRieszOp type of the Riesz operator to use for the observation
--RieszOp type of the Riesz operator to use for both of the above
--CSP enables coupled saddlepoint problem mode
the All-In-One mode uses the following options:
--symmetric use symmetric form N′

J

--multiThread enable multithreading
the CSP mode uses the following options:
--rho value of the parameter ρ, default 1/2
--P-* these options will be used for the primal system
--A-* these options will be used for the adjoint system

BoundaryValue-
Problem

--f a name of a RightHandSide object, see page 148
--g a name of a RightHandSide object, see page 148
--order order of the border preconditioner, default 1/2
--side TraceOperator: East, West, North, South
--Schur calculates the Schur complement SJ instead
--SMP-Solver solver for the calculation of A−1

J
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The action objects make use of the following parameters :

Solve --quiet shorten output of messages
--verbose opposite of --quiet, takes precedence
--no-stats do not compute statistics (iterative solvers only)
--yes-stats opposite of --no-stats, takes precedence
--max-steps int: maximum number of iterations (iterative solvers only)
--save-RAM save memory (by writing unused data to disk)
--output filename: solution vector in nodal basis
--no-output do not save solution vector
--statsfile filename: output file for statistics
--solver name: name of the solver to use
--exact-sol filename: loads the exact solution from specified file
--tmp-sol save solution in wavelet discretization to file

NestedIteration --ni int: nested-iteration steps to conduct
--solvers names: comma separated list of solvers applied sequentially
--output filename: solution vector in nodal basis (of last iteration)
--no-output do not save solution vectors
--statsfile filename: statistics
--prefix path common prefix for all file operations
--load-sols loads the exact solutions from specified files
--tmp-sols saves solutions in wavelet discretization to files
--no-stats do not compute statistics (iterative solvers only)
--yes-stats opposite of --no-stats, takes precedence

Assemble --spy print ’X’ and ’O’ instead of real values
--rhs assemble the right hand side vector
--Mathematica print matrix in a Mathematica compatible format
--output filename: where to write the matrix to

Condition --max-it int: limit maximum number of iterations
--no-max-it no maximum number of iterations
--tol value: tolerance to achieve for eigenvalues
--save-EV save the computed eigenvectors to file
--load-pow-EV filename: load start vector from file for power iteration
--load-inv-EV filename: load start vector from file for inverse iteration
--skip-pow-it skips power iteration
--skip-inv-it skips inverse power iteration
--shift value: spectral shifting (for inverse power iteration)

Eigenvalues --max-it int: maximum number of iteration for algorithm
--no-max-it no maximum number of iterations
--output filename: name of the file to write the eigenvalues to
--no-output do not save eigenvalues

The right hand side implementations accept the following parameters:

Const --*-value value of the constant function
Linear --*-ord ordinate for linear function

--*-slope slope of linear function
ExpAbs --*-factor the factor in the exponent of f of (P3)

--*-addend the addend in f of (P3)
Skip --*-v1 value before the skip

--*-v2 value after the skip

The asterisk must be replaced with the name of the variable that is being addressed, i.e., ’f’ or ’y’.
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A.3.2 diagassemble/diagassemble

The helper program diagassemble can calculate the diagonal of the stiffness matrix for any implemented
wavelet base and save them to disk. These files are then later loaded for preconditioning purposes.
This can either be done in the traditional fashion of inserting every wavelet consecutively (”normal
assemble”) or by utilizing the tensor product setting and the repetetive structure of the wavelet basis
(”signature assemble”). The first one can utilize multi-threading for speed gains. The latter one does not
this as the overall amount of complexity in this case can be reduced to be proportional to Jn (J=level,
n=dimension) and not the number of unknowns NJ ∼ 2nJ . (In other words: signature assemble is fast.)
The general command line structure is as follows:

./diagassemble --level <I,J> --dim <N> [ other options ]

Irregular command line options will be ignored silently. The mandatory command line options are :

--level comma separated list of positive integers

--dim positive integer, most likely 1,2 or 3

The program normaly runs a ”normal assemble”and can be configured with these options:

--multiThread enable multithreading

--signature use tensor structure instead of choosing every unit vector

Additionally, the MRA options of page 151 are recognized.

A.3.3 psgen/wavpsgen

This helper program takes as input wavelet coefficient vectors and outputs a wavelet coefficient diagram
in eps format. The eps generation code is based on code from Carsten Burstedde’s BWP framework,
see [11].
The general command line structure is as follows:

./wavpsgen --input <file.tmp> --output <file.eps> [ other options ]

Irregular command line options will be ignored silently. The mandatory command line options are :

--input input filename (wavelet coefficients)

--output output filename (eps file)

The dimensions of the picture can be controlled with the following options:

--width width of the eps picture (default: 600)

--height height of the eps picture (default: 400)
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B Notation

The following notations and definitions should hold anywhere in this document unless explicitly specified
otherwise. We have taken care to avoid using any mathematical symbol more than once for different
purposes. Due to the small number of Latin and Greek characters it may not always be possible to
guarantee absolute uniqueness across the whole document.

B.1 General Notation

keywords are emphasized and often referenced in the index

computer the typewriter font indicates programming language or computer reference

a.e. almost everywhere, i.e., valid everywhere except for a domain of measure zero

∧,∨ logical and, logical or

H,N a Hilbert space, a product space of Hilbert spaces

X,Y, ... spaces are denoted by capital letters

u, v, w, ... elements of spaces

u,v,w, ... elements of sequence spaces, especially of `2

uJ ,vJ ,wJ , ... elements of finite sequence spaces, especially of `2(∆J)

A,B,C, ... discretized operators in wavelet form, i.e. matrices of possibly infinite size

‖ · ‖, ‖ · ‖X norms in some space X

(·, ·), (·, ·)X inner product of X

|·| , |·|X seminorms

| · | the absolute value function in IR; any (equivalent) norm in IRn

〈·, ·〉, 〈·, ·〉X×X′ dual form on the space X, i.e. for u ∈ X, v ∈ X ′ : 〈u, v〉X×X′ := v(u)

〈·, ·〉 scalar product of IRn, i.e. for v, w ∈ IRn : 〈v, w〉 := vTw

Ω an open bounded set in IRn with boundary ∂Ω ⊃ Γ

I; �, �n the interval (0, 1); the open unity cube in IRn, (0, 1)n

x1, . . . , xn Euclidian coordinates in IRn

δ(i,j) Kronecker delta for numbers or multi-indices =
{

0 i 6= j
1 i = j

χA characteristic function on some interval/domain A

f |A restriction of a function f : Ω→ IR to a subdomain A ⊆ Ω

dµ; ds the Lebesque measure in IRn; surface measure

. (&) lesser (greater) or equal to except for a positive constant which is independent of any
parameters of the arguments, see (1.1.4)

∼ stands for both . and &, see (1.1.4)

# cardinality of a set

b·c (d·e) the highest (smallest) non-negative integer smaller (higher) than or equal to the argu-
ment
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κ(·), κ2(·) (spectral) condition of an operator, matrix or function set

Al matrix whose rows and columns are reversed, i.e. (Al)i,j := (A)n−i,n−j

(αi, . . . , αn) multi-index:
The n-dimensional multi-index α is a n-tuple of non-negative integers αi with
i = 1, . . . , n. Two multi-indices are equal, if and only if all indices are equal. The
length is denoted by |α| and defined as α1 + · · ·+ αn. For x ∈ IRn are these shorthand
expressions defined:

xα = xα1
1 · · ·xαn

n

∂α = Dα =
∂|α|

∂xα
=

∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n

O(·),O(·),Θ(·) Landau symbols:
Let n be an integer that tends to infinity and x be a variable that approaches some limit
x∗ ≥ x0. Also let g be a positive function and f another function. Then are the Landau
symbols defined as:
f = O(g) :⇐⇒ |f(x)| < k g(x) for all x0 ≤ x ≤ x∗ and a constant k > 0
f = O(g) :⇐⇒ |f(x)| /g(x)→ 0 for all x0 ≤ x ≤ x∗
f = Θ(g) :⇐⇒ f = O(g) ∧ g = O(f)

[t0, . . . , tn] f divided difference:
For any f ∈ Cn and knot points −∞ < t0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn <∞ are the divided
differences recursively defined as

[t0] f = f(t0),
[t0, . . . , tn] f = [t0,...,tn−1]f−[t1,...,tn]f

tn−t0 , tn 6= t0,
[t0, . . . , tn] f = f (n)(t0)/n!, t0 = · · · = tn .

φd(x) cardinal B-Spline:
The cardinal B-spline φd of order d ∈ IN is given as

φd(x) := d [0, . . . , d]
(
· − x− bd

2
c
)d−1

+

,

where xd+ := (max {0, x})d.

F(·), (̂·) Fourier transform, see (1.2.9)

B.2 Special Mathematical Symbols

n spatial dimension

s;m+ σ Sobolev smoothness indices: s ∈ IR; m ∈ IN0, 0 < σ < 1; see Section 1.2.2

γj(·) general trace operator of order j, see (1.2.23)

L,A linear partial differential operator of order 2m, see (1.3.2)

NJ generic number of unknowns, may be different in every section

h, hj discretization error on level j

j0 minimum level in a multiresolution analysis (MRA), see (R)(2.1.6)

J maximum level of resolution in a given context, see Section 2.1.3

d (d̃) primal (dual) order of polynomial exactness, see (P)(2.2.3) (see (P̃)(2.2.4))

γ (γ̃) primal (dual) regularity, range of smoothness for norm equivalences, see (2.2.7)
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Sj (S̃j) closed subspace of primal (dual) Hilbert space, see (2.1.7) (see (2.1.43))

Φj (Φ̃j) primal (dual) single-scale basis (also called generators), see (2.1.7) (see (2.1.43))

∆j index set for single-scale bases Φj and Φ̃j , see (2.1.7) and (2.1.43)

φj,k (φ̃j,k) primal (dual) single-scale function on level j located at position k ∈ ∆j

Wj (W̃j) primal (dual) detail spaces, see (2.1.13) (see (2.1.47))

Ψj (Ψ̃j) primal (dual) complement basis for space Wj (W̃j), see (2.1.13)

∇j index set for complement bases Ψj and Ψ̃j , see (2.1.13)

ψj,k (ψ̃j,k) primal (dual) wavelet function on level j located at position k ∈ ∇j , see (2.1.14)

Ψ(J) (Ψ̃(J)) primal (dual) wavelet basis up to level J , see (2.1.28)

S (S̃) primal (dual) multiresolution analysis(MRA) of H (H′), see Definition 2.2

Mj (M̃j) two-level transformation matrix from level j to j + 1, see (2.1.18)

Mj,0 (M̃j,0) left part of Mj(M̃j); matrix of dimensions #∆j+1 ×#∆j , see (2.1.11)

Mj,1 (M̃j,1) right part of Mj(M̃j); matrix of dimensions #∆j+1 ×#∇j , see (2.1.17)

Pj (P̃j) primal (dual) projector onto the space Φj (Φ̃j), see (2.1.44) (see (2.1.45))

TJ (T̃J) primal (dual) fast wavelet transform, see (2.1.31) (see (2.1.61))

Gj inverse of Mj , see (2.1.20)

Gj,0 upper part of Gj ; matrix of dimensions #∆j ×#∆j+1, see (2.1.24)

Gj,1 lower part of Gj ; matrix of dimensions #∇j ×#∆j+1, see (2.1.24)

II infinite index set, see (2.1.39)

λ := (j, k) ∈ II wavelet index in short notation; |λ| := j for n = 1
|λ| := max{j1, . . . , jn} for n > 1, see (2.2.24)

ΨII (Ψ̃II) primal (dual) wavelets associated to the index set II, see (2.1.39)

MH (M̃H′) primal (dual) Gramian matrices using the inner product (·, ·) of space H (H′), see
(2.1.58) (see (2.1.59))

AH1 ,AJ stiffness matrix, see (2.3.38)

SH1 ,SJ Laplace matrix, see (2.4.13)

D±s any diagonal matrix that can be used for shifting wavelet coefficient vectors in the
Sobolev scale by ±s, see (2.2.12) and (2.2.13)

D±s
1 diagonal matrix consisting of powers of 2, see (2.2.14)

D±s
a inverse diagonal of stiffness matrix, see (3.2.34)

D±s
{O,X} special preconditioner for basis transformed wavelet bases, see (2.3.45)

Ψs (Ψ̃s) scaled wavelet bases constituting Riesz bases for H+s (H+s′), see Corollary 2.22

IIJ finite subset of II created by eliminating all indices with | · | > J , see (2.2.24)

Ψs
J scaled version of finite wavelet basis (2.2.26), see (2.2.24)
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RH (RH) (wavelet discretized) Riesz operator for space H ∈ {L2,H
s, . . .}, see (2.2.38)

D̂+2s diagonal matrix used in the construction of Riesz operator R̂Hs , see (2.2.42)

R̂Hs (R̂Hs) specifically constructed (wavelet discretized) Riesz operator for Hs, see (2.2.44)

˚̂RHs Riesz operator for Hs normalized w.r.t. constant functions, see (5.2.8)

R̃Hs (˚̃RHs) wavelet discretized (normalized) interpolating Riesz operator for Hs, see (2.2.53)

˚̂RHs wavelet discretized Riesz operator R̂Hs normalized w.r.t. constant functions, see (5.2.8)

Cj basis transformation working on the boundary functions only, see (2.3.30)

O orthogonal basis transformation, see (2.3.39)

Φ(�,j),Ψ(�,J), .. tensor product analogons to their respective 1D objects, see Section 2.4.1

n = n(x) outward normal at any point x ∈ ∂Ω

cX , CX lower and upper constants used in norm equivalences for an operator X ∈ {A,L, . . .}

B (B) trace operator (in wavelet discretization), see (3.2.27) (see (3.2.28))

L (L) saddle point matrix (in wavelet discretization), see (3.1.20) (see (3.1.26))

JH levels of resolution of the finite dimensional saddle point problem (see Section 3.1.3);
JN = (σ, π) ≡ levels on the domain and boundary

σ level of resolution on the domain Ω (see Section 3.1.3)

π level of resolution on the boundary Γ (see Section 3.1.3)

y (y), u (u) state and control variables (in wavelet discretization), see Section 4.1

J (y, u)(J(y,u)) cost functional (in wavelet discretization), see Section 4.1 and (4.2.37)

y∗, yΓY observation in control theory, see Section 4.1 and Problem 4.20

ω weighting parameter in the cost functional, see (4.2.1)

T (T) trace operator (in wavelet discretization), see (4.2.4) (see (4.2.36))

c∗, C∗ constants bounding the second variation of the cost functional, see (4.2.45)

s, t smoothness indices in the cost functional, see (4.3.1)

N (N) All-In-One operator (in wavelet discretization) , see (4.2.21) (see (4.2.53))

JN levels of resolution of the finite dimensional control problem (see Section 4.2.3);
JN = (σ, π, τ) ≡ levels on the domain, control boundary, observation boundary

σ level of resolution on the domain Ω (see Section 4.2.3)

π level of resolution on the control boundary Γ (see Section 4.2.3)

τ level of resolution on the observation boundary ΓY (see Section 4.2.3)

ρ, ρi step size parameter in the Inexact Gradient algorithm (see Section 4.4.2)

:= ← initial definition and update of variables in the algorithm specifications
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B.3 Spaces

IN the natural numbers = {1, 2, . . .}

IN0 the natural numbers including zero = {0, 1, 2, . . .}

ZZ integers = {. . . ,−2,−1, 0, 1, 2, . . .}

IQ the rational numbers

IR, IRn the real numbers, the n-dimensional Euclidean Vector space

IR+, IR
n
+ the positive real numbers, {(x1, . . . , xn) |xi > 0 for 1 ≤ i ≤ n}

`2 = sequence space of all sequences for which the `2-norm is finite, i.e.
let c ∈ IRIN := {x = (xi)i∈IN : xi ∈ IR for i ∈ IN}, then

c ∈ `2 ⇐⇒ ‖c‖`2 :=

(∑
k∈IR

|ck|2
)1/2

<∞ .

B.4 Function Spaces

Ck(Ω) = {φ : Ω→ IR | all derivatives ∂αφ of order |α|≤k are continuous in Ω}

Ck(Ω̄) = {φ ∈ Ck(Ω) | all derivatives ∂αφ of order |α|≤k have continuous extensions to Ω̄}

Ck0 (Ω) = {φ ∈ Ck(Ω) | suppφ ⊂⊂ Ω, i.e. φ has compact support fully contained in Ω}

Ck,1(Ω) = Lipschitz continuous functions =

{f ∈ Ck(Ω) | |Dsf(x)−Dsf(y)| ≤ L|x− y| ∀αmulti-index, |s| ≤ k, 0 < L <∞}

Ck,α(Ω) = Hölder continuous functions of order 0 < α < 1 =

{f ∈ Ck(Ω) | sup
x6=y∈Ω

|Dsf(x)−Dsf(y)|
|x− y|α

<∞ ∀αmulti-index, |s| ≤ k}

C∞(Ω) = space of infinitely differentiable functions on Ω with values in IR =
⋂
k∈IN {Ck(Ω)}

D(Ω), C∞0 (Ω) = space of infinitely differentiable functions with values in IR and with compact sup-
port fully contained in Ω

D′(Ω) = dual space of D(Ω) = space of distributions on Ω

L2(Ω) = space (equivalence class) of all real valued square Lebesque-integrable functions on
the domain Ω

Hm(Ω) = Sobolev space of order m ∈ IN =

{φ ∈ L2(Ω) | ∂φ
∂xi
∈ L2(Ω), . . . , Dαφ ∈ L2(Ω) ∀αmulti-index, |α| ≤ m}

Hm
0 (Ω) = {φ ∈ Hm(Ω) |Dαφ = 0 on ∂Ω, |α| ≤ m− 1}

Hs(Ω) = Sobolev space of fractional order s on Ω

H−s(Ω) = Dual Space of Hs
0(Ω)

158



REFERENCES

References

[1] R. Adams. Sobolev Spaces. Academic Press, 1978.

[2] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[3] H. Alt. Lineare Funktionalanalysis. Springer, 2002. (In German).

[4] I. Babus̆ka. The finite element method with Lagrange multipliers. Numer. Math., 20:179–192, 1973.

[5] I. Babus̆ka. The finite element method with penalty. Mathematics of Computation, 27:221–228,
1973.

[6] A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and K. Urban. Adap-
tive wavelet schemes for elliptic problems – implementation and numerical experiments. SIAM
J. Sci. Comp., 23:910–939, 2001.

[7] L. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders, editors. Large-Scale PDE–
Constrained Optimization, volume 30 of Lecture Notes in Computational Science and Engineering.
Springer, July 2003.

[8] D. Braess. Finite Elemente – Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie.
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adaptive, 34, 136, 138
adjoint operator, 33
adjoint system, 77, 80
admissible controls, 73
All-In-One Solver, 88, 108, 138
anisotropic, 51
automorphism, 82

B-spline
cardinal, 22, 40, 155

Banach space, 9, 21
band matrix, 86
basis

condition, 37
multiscale, 24
multivariate, 51
single-scale, 22, 24, 35, 48, 95, 156
univariate, 51

Bernstein inequality, 7, 31, 60
best approximation, 34
bilinear form, 17, 49, 62, 65
biorthogonal, 6, 41
boundary condition

essential, 18
natural, 18

boundary penalty method, 55
boundary value problem, 62, 74
BPM, see boundary penalty method

Cea-Lemma, 19
characteristic function, 44
classical solution, 16
coercive, 17
column vector, 21
compact support, 7
condition number, 93
Conjugate Gradient, 70
constraint, 12
continuous, 17
control, 5, 73, 74, 82, 85, 157

boundary, 74
distributed, 74

control problem, 73
coordinate patch, 13
cost functional, 73, 74

data fitting term, 74, 115, 128
decomposition

algorithm, 25
identity, 24

design equation, 77
detail spaces, 23, 27
Dirichlet boundary condition, 16, 18
discrete ellipticity condition, 59, 82, 86

discretization error, 19, 34
divided difference, 155
dual

basis, 27
form, 9, 14
pair, 41

dual space, 9

elliptic, 16, 17, 62
elliptic boundary value problem, 16, 55, 85
Embedding Theorem, 15
energy norm, 64, 66
equivalent, 9
expansion

dual, 29
primal, 29

fast wavelet transform, see wavelet transform
FEM, 6, 20
FEP, 59
fictitious domain, 62
Finite-Element-Wavelets, 51
Fortin’s criterion, 59
Fourier transform, 11, 116

Galerkin
scheme, 35
stable, 35

Gelfand triple, 30
generator, 22, 40

dual, 27, 86
primal, 27

generators, 45, 156
Gramian matrix, 29, 37, 52, 156
Green’s formula, 10

Hölder, 10
hat function, 44, 45
Helmholtz problem, 17
Hilbert space, 9–11, 21, 74

indefinite, 68
Inexact Gradient, 89, 108, 109, 127, 132, 133,

135, 138
inf-sup condition, 56, 57, 60, 67
inverse mapping theorem, 78
isomorphism, 11, 33
isotropic, 51
iteration

common, 68
nested, 68, 88, 98

Jackson inequality, 7, 31, 60

kernel, 56
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Lagrange multiplier method, 55, 62, 75
Lagrangian functional, 80
Lagrangian multipliers, 5, 18, 56, 63
Landau symbols, 155
Laplace matrix, 37, 52, 156
Laplace operator, 16
Lax-Milgram, 17, 19
LBB, 7, 36, 59, 60, 67, 82, 86
Lebesgue integrable, 10
linear operator, 9
Lipschitz, 10
locality, 22
LU, 87, 88, 90, 92

machine precision, 90, 128
mask, 22, 31
mass matrix, 37, 52
model, 73, 74
moment conditions, 6, 30, 51
mother wavelet, 23
MRA, see multiresolution analysis
multi-index, 10, 51, 54, 155
multiresolution analysis, 6, 22, 27, 41, 155, 156
multiscale, 25

nested iteration, see iteration
Neumann boundary condition, 17, 18, 106
norm equivalence, 6, 32

observation, 73, 74, 82, 157
operator norm, 9
optimal control, 73
orthogonal, 24, 49

partial differential equation, 16
PDE, see partial differential equation
piecewise polynomials, 7
Poisson problem, 17
polynomial

exactness, 30, 31, 155
reproduction, 41

positional index, 22
precondition, 34
primal system, 77, 80
projector property, 27, 32
prolongation, 68, 92
pyramid scheme, 25

QR, 69, 88, 90, 92, 98

reconstruction
algorithm, 25
identity, 24

refinable, 23, 40
refinement relation, 22
regularity, 30, 51, 155
regularization term, 74, 115

restriction, 11, 68
Riesz

basis, 6, 21, 27, 32, 33, 36, 40, 82, 94, 156
bound, 36, 38
map, 37
operator, 37, 78, 86, 115, 138
stability, 21

Riesz operator, 79
Riesz Representation Theorem, 14, 37
Robin boundary condition, 55
row vector, 21

saddle point matrix, 100, 157
saddle point problem, 36, 55, 71, 82, 85, 86
Schur complement, 64, 71, 95, 98, 101, 109
self-adjoint, 63, 77
separable, 9
single-scale, 25
Sobolev space, 10–12, 14, 15
spectral condition, 70
spline wavelets, 31
stability, 21
stable completion, 24, 43, 44
stable decomposition, 24
standard representation, 33
state, 5, 73, 74, 85, 157
stiffness matrix, 36, 49, 52, 65, 95–97, 123, 156
submersion, 75

tensor product, 51, 157
trace, 12
trace operator, 18, 62, 85, 155, 157
Trace Theorem, 13, 77
two-scale relation, 22, 49

uniformly bounded, 7, 66
uniformly invertible, 7
uniformly sparse, 23
uniformly stable, 22, 35
Uzawa, 64

vanishing moments, 30, 41
variational problem, 17

wavelet functions, see wavelets
wavelet transform, 25, 26, 31, 33, 35, 156

dual, 29
inverse, 25
primal, see wavelet transform

wavelets, 23, 156
biorthogonal, 28
dual, 6, 28
primal, 6, 28

weak derivative, 10
weak solution, 18
Whitney-extension, 14
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