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Noise Spectrum Estimation in Adverse Environments
Improved Minima Controlled Recursive Averaging

Israel Cohen

Abstract—Noise spectrum estimation is a fundamental compo- A useful noise estimation approach, known as the minimum
nent of speech enhancement and speech recognition systems. Instatistics (MS) [12], is to track the minima values of a smoothed
this paper, "Ivl\jgéf‘em an imﬁrofved minima t(_:onttr_ollet_:i re((:jursive power estimate of the noisy signal, and multiply the result by a
averagin approachn, 10or noise estimation In aaverse . . .
enviro%mgergts involzlingpnonstationary noise, weak speech com- fa(?tor thqt compensates the bias. However, the \{arlance of this
ponents, and low input signal-to-noise ratio (SNR). The noise NOise estimate is about twice as large as the variance of a con-
estimate is obtained by averaging past spectral power values, using ventional noise estimator [12]. Moreover, this method may oc-
a time-varying frequency-dependent smoothing parameter that is casionally attenuate low energy phonemes, particularly if the
adjusted by the signal presence probability. The speech presence yinimum search window is too short [4]. These limitations can

probability is controlled by the minima values of a smoothed b tth . f sianificantly hiah lexity. b
periodogram. The proposed procedure comprises two iterations € overcome, at the price or signiicantly higher compiexity, by

of smoothing and minimum tracking. The first iteration provides ~adapting the smoothing parameter and the bias compensation
a rough voice activity detection in each frequency band. Then, factor in time and frequency [13]. A computationally more ef-
smoothing in the second iteration excludes relatively strong speech ficient minimum tracking scheme is presented in [5]. Its main
components, which makes the minimum tracking during speech q.a\hacks are the very slow update rate of the noise estimate
activity robust. We show that in nonstationary noise environments . f dden rise in th . level. and its t
and under low SNR conditions, the IMCRA approach is very In case of a suaden _r|se In (he noise energy level, an '? en-
effective. In particular, compared to a competitive method, it dency to cancel the signal [16]. Other closely related techniques
obtains a lower estimation error, and when integrated into a are thelower-energy envelope trackind9] and thequantile
speech enhancement system achieves improved speech quality an¢hase21] estimation methods. Rather than picking the minima
lower residual noise. values of a smoothed periodogram, the noise is estimated based
on a temporal quantile of a nonsmoothed periodogram of the
. INTRODUCTION noisy signal. Unfortunately, these methods suffer from the high

OISE POWER spectrum estimation is a fundament&Pmputational complexity associated with the sorting operation,
N component of speech enhancement and speech rec\?gj the extra memory required for keeping past spectral power
nition systems. The robustness of such systems, particulaffues.
under low signal-to-noise ratio (SNR) conditions and nonsta- Recently, we introduced a noise estimation approach, namely
tionary noise environments, is greatly affected by the capabiliyinima controlled recursive averagindICRA) [3], [4], that
to reliably track fast variations in the statistics of the nois€0mbines the robustness of the minimum tracking with the sim-
Traditional noise estimation methods, which are based on voR¥€ity of the recursive averaging. The noise estimate is obtained
activity detectors (VADs), restrict the update of the estimate RY averaging past spectral power values, using a smoothing pa-
periods of speech absence. Additionally, VADs are generall§meter that is adjusted by the speech presence probability in
difficult to tune and their reliability severely deteriorates fopubbands. The speech presence probability is controlled by the
weak speech components and low input SNR [15], [16], [2 linima values of a smoothed p.eriodogram. .In gontrast to .the
Alternative techniques, based on histograms in the power sp and related methods, the minimum tracking is not crucial,
tral domain [10], [14], [19], are computationally expensive?ince it only controls the recursive averaging as a secondary pro-
require much memory resources, and do not perform well @gdure. The recursive averaging is carried out without a hard
low SNR conditions. Furthermore, the signal segments usdigtinction between speech absence and presence, thus contin-
for building the histograms are typically of several hundredously updating the noise estimate even during weak speech

milliseconds, and thus the update rate of the noise estimat@vity. Additionally, the smoothing of the noisy periodogram
essentially moderate. is carried out in both time and frequency, which takes into ac-

count the strong correlation of speech presence in neighboring
frequency bins of consecutive frames. We have shown that the
MCRA noise estimate is computationally efficient, and charac-
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tracking. The first iteration provides a rough voice activity (k, ¢) = X(k, ¢) + D(k, £), wherek represents the fre-
detection in each frequency band. Then, the smoothing in theency bin index, andthe frame index. Given two hypotheses,
second iteration excludes relatively strong speech componeidfs(k, ¢) and H;(k, £), which indicate respectively speech
which makes the minimum tracking during speech activitgbsence and presence in ftth frequency bin of théth frame,
robust. This facilitates larger smoothing windows, and thusaed assuming a complex Gaussian distribution of the STFT
decreased variance of the minima values. The estimation of tteefficients for both speech and noise [6], the conditional
speech presence probability is based on a Gaussian statisficabability density functions (PDFs) of the observed signal are
model [6]. However, the priori speech absence probability isgiven by

controlled by the result of the minimum tracking. We show that
this prevents the estimated noise from increasing during wea . 1

speech activity, especially when the input SNR is low. Thei% (Y(k, )| Holk, £)) = TAg '

speech presence probability is biased toward higher values to 1)
avoid speech distortions in speech enhancement applications.

Accordingly, we include in the noise estimator a factor to F(Y(k, 0)| Hi(k, £) = 1

compensate its bias. We show that the value of the bias com- T(Az(k, £) + Aa(k, £))

pensation factor is determined by thepriori speech absence Y (k, f)|2

probability estimator, and an explicit expression is derived. - exp {— ok, ) + Nl D) }
Objective and subjective evaluation of timeproved minima LA di®

controlled recursive averagindIMCRA) estimator is per- (2)

formed under various environmental conditions. We examine
the tracking capability for nonstationary noise, the segmentlere . (k, £) E{|X(k, O] | Hi(k, £)} and
relative estimation error for various noise types and levels, and(k, ¢) 2E {ID(k, £)|*} denote respectively the short-term
the improvement in the segmental SNR when integrated intspectrum of the speech and noise signals.

speech enhancement system. We show that compared to the MiSet thea posteriorianda priori SNRs be defined by [14], [6]
method, the proposed noise estimate is superior. Specifically, it

12

responses more quickly to noise variations, it obtains signifi- (k0 2 Y (k, ) 3)

cantly lower estimation error, and yields a higher improvement / Aa(k, £)

in the segmental SNR. The advantages of the IMCRA method A Ao(k, 0)

are particularly notable in adverse environments involving E(k, 0) = h\ (k7 7 (4)

nonstationary noise, weak speech components, and low input d

SNR. Then, the conditional PDFs of the posteriori SNR can be
The paper is organized as follows. In Section Il, we presewtitten as

the IMCRA noise estimator. The recursive averaging is accom-

plished through a time-varying frequency-dependent smoothing (v(k, £) | Ho(k, £)) = e~ * Ou(y(k, £)) (5)

parameter, which is adapted under the speech presence uncer- 1

tainty. In Section I1l, we introduce an estimator for tagriori ~ J (7(k, €) | H1(k, £)) = T+Ek D)

speech absence probability. The estimator is controlled by the '

minima values of a smoothed periodogram of the noisy signal. exp {_ v(k, £) } w((k, 0))

In Section IV, we combine the time-varying recursive averaging 1+¢(k, £) 7

with the minima-controlled estimation of tlagoriori speech ab- (6)

sence probability, and present the IMCRA algorithm. Finally, in ) ) o

Section V, we evaluate the proposed method, and discuss expédereu(-) is the unit step function [i.ey() = 1fory > 0 and

imental results, which validate its effectiveness. u(vy) = 0 otherwise]. Applying Bayes rule for the conditional
speech presence probabiliyk, £) 2p (Hi(k, £) | v(k, £)),

one obtains
Il. TIME-VARYING RECURSIVEAVERAGING

-1
In this section, we derive an estimator for the noise power(k, ¢) = {1 + _atk 6 (14 &(k, £)) exp(—v(k, 4))}
spectrum under speech presence uncertainty. The noise estimate 1—q(k, £) @
is obtained by averaging.pas.t spectral power values of the no\i/ﬁ){ereq(h 0 A P (Ho(k, £)) is thea priori probability for
measurement, and multiplying the result by a constant factor

that compensates the bias. The recursive averaging is carﬁQSeCh absence, 'amﬁ 7_5/(1,"' £)- ) . .
out using a time-varying frequency-dependent smoothing pa—A common noise estimation technique is to recursively

rameter, that is adjusted by the speech presence probability. 2V€r@g€ past spectral power values of the noisy measurement
Let #(n) and d(n) denote speech and uncorrelated a&i_uring periods of speech absence, and hold the estimate during

ditive noise signals, respectively. The observed sigyal) speech presence. Specifically

is divided into overlapping frames by the application of AL (k0 Nk 0+ 1) = oo 0 1— Y (k. 02
window function and analyzed using the short-time Fourier o(k, )'_d( £t )_fd alk, ) + (1 = aq)[Y (K, £)]
transform (STFT). In the time-frequency domain we haveH;(k, £): Aa(k, £ + 1) = Aa(k, £) (8)
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whereay (0 < a4 < 1) denotes a smoothing parameter. Under I1l. M INIMA -CONTROLLED ESTIMATION
speech presence uncertainty, we can employ the condition

h babilit q th . 3 this section, we introduce an estimatit, ¢) for thea
speech presence probabiiity, and carry out the recursive avﬁribri speech absence probability. The estimator is controlled by

aging by the minima values of a smoothed power spectrum of the noisy
— - signal.
Aa(k, £+ 1_) = Aa(k, O)p(k, £) In contrast to the MS and related methods [5], [13], the
+ [aaa(k, )+ (1 = ag)|Y(k, )] (1 = p(k, £)). (9) smoothing of the noisy power spectrum is carried out in
both time and frequency. This takes into account the strong
Equivalently, the recursive averaging can be obtained by  correlation of speech presence in neighboring frequency bins of
-~ -~ consecutive frames [4]. Furthermore, the proposed procedure
Xa(k, L4 1) = aq(k, O)Xa(k, )+ [1 — aa(k, O]Y (k, )7 comprises two iterations of smoothing and minimum tracking.
(10) The first iteration provides a rough voice activity detection
where in each frequency band. Then, the smoothing in the second
A iteration excludes relatively strong speech components, which
aa(k, £) = ag + (1 — aq) p(k, £) (11) makes the minimum tracking during speech activity robust,
even when using a relatively large smoothing window.
is a time-varying frequency-dependent smoothing parameteri et o, (0 < a, < 1) be a smoothing parameter, and det
The smoothing parameter, is adjusted by the speech presgenote a normalized window function of lengthy + 1, i.e.,

ence probability, which is estimated based on the noisy meg”  b(i) = 1. The frequency smoothing of the noisy power
surement. The speech presence probability also modifies gjctrum in each frame is defined by

spectral estimate of the clean speech, and therefore is gener-
ally biased toward higher values to avoid speech distortions in
speech enhancement applicatioffg. Accordingly, estimating

the noise spectrum using (10) and (11) would be biased toward
lower values. We propose to include a bias compensation factrbsequently, smoothing in time is performed by a first-order
in the noise estimator recursive averaging

w

Sik )= 7 b(i) [Y(k—i, OF . (14)

i=—w

Aa(k, £+1) = 8- Xa(k, £+1) (12) S(k, £) = asS(k, £ = 1) + (1 = as)Ss(k, £). (15)

such that the factgf compensates the bias when speech is aE— accordance with the MS method, the minima values of
sent P P (k, £) are picked within a finite window of lengtP, for each

frequency bin
)\d(k7 f)

_2d\ B 13 Smin(k, £) 2 min{S(k, ¢) | —D+1<¢ <f}. (16
Tk 0] (13) (k, 0) {S(k, ') | }. (16)

e

k, 0)=0 . .
. It follows [13] that there exists a constant facy,;,,, indepen-

In Appendix I, we show that the value ¢fis completely de- dent of the noise power spectrum, such that
termined by the particular estimator for thgriori speech ab- =)

sence probability. An explicit expression f81is derived in the EA{Smin(k, £) | £(k, £) = 0} = By, - Aalk, £). (A7)
case of estimating theepriori speech absence probability by thel-he factor B, represents the bias of a minimum noise es-

method proposed in the next section. timate, and generally depends on the value®ot,, w and

We note that the MS antbwer-ene_rgy envellope t.rackir_19the spectral analysis parameters (type, length and overlap of the
methods [12], [13], [19], also entail a multiplicative b'asanalysis windows)

compensation factor. However, its value has to be determineq_et ~Yenin(k, £) and¢(k, £) be defined by

by simulations. Furthermore, these methods estimate the noise ’ ’

at a given frame by processing a fixed time segment, i.e., a fixed A Y (k, O A S(k, £)

number of past frames. Whereas, our noise estimator is baﬁé’d“(k’ )= m’ C(k, £) = m

on a variable time segment in each subband, which takes into (18)
account the probability of speech presence. The time segment

is longer in subbands that contain frequspeeciportions, and Under the assumed statistical model, the PDFs,.f,(k, £)
shorter in subbands that contain frequsifénceportions. This and((k, ¢), in the absence speech, can, respectively, be approx-
feature. has t.)een cons_lder.ed [19] a. desirable CharaCtenStK? QI\ larger smoothing window decreases the variance of the minima values,
the noise estimator, which improves its robustness and tl"51CkB"L9also widens the peaks of the speech activity power. An alternative, compu-

capability. tationally expensive, solution is to modify the smoothing in time and frequency
based on a smoothedposterioriSNR [13].

3The value ofB,..;, can be estimated by generating a white Gaussian noise,
1The spectral gain is minimal when speech is absent. Hence, deciding spesuth computing the inverse of the mean%fi.(k, ¢). This takes into account
is absent when speech is present results ultimately in the attenuation of spessb the time-frequency correlation of the noisy periodogfeiik, ¢)|%. Notice
components. Whereas, the alternative false decision, up to a certain exttvatthe value 0B,,.;, is fixed, whereas in [13], itis estimated for each frequency
merely introduces some level of residual noise. band and each frame.

min
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imated by exponential and chi-square distributions (Appendsearch windowD) can be used. This reduces the variance of the
1)} minima values [13], and shortens the delay when responding to
_ a rising noise power, which eventually improves the tracking ca-

F Omin(k, £) | Ho(k, £)) m e Oy (k, £)  (19) pability of the noise estimator.

1 _ Let Swin(k, £) be the result of the second iteration minimum
f (C(k7 K) | HU(k’ E)) ~ T C(k7 K)#/z ! tracking

(2)" )

eXp{_uC(j f)

Smin(k, £) 2 min {S(k M| -D+1<l < E}
butce. o)

20) and letyuin (k, £) and((k, ) be defined by
whereI'(-) is the gamma function, and is the equivalent de- Yemin (K, £) = B (kD (k. 0)’ ((k, ) = B3 (kD (k 0)
grees of freedom. Based on the first iteration smoothing and rmmm_—mA i ,(28)

minimum tracking, we propose the following rough decision
about speech presence: Since we use a relatively small significance level in the first
1, if (K, £) < 70 ?terati_on €= 0.01), the influence of the voice acfcivity detector
I(k, £) = { andc(k, ) < G (speech is absent) in n0|s_e-only penqu can be neglected. That is, _the effect of
, , excluding strongnoisecomponents from the smoothing process
0, otherwise (speechiis present). g negjigible. Accordingly, the conditional PDFs ;. (k, ¢)
1) and ((k, ¢), in the absence of speech, are approximately the
same as those of.,in(k, £) and((k, £) [(19) and (20)].

The thresholds, and(, are set to satisfy a certain significanc g X =+
We propose the following estimator for tlaepriori speech

level e .
absence probability:
P (Vmin(k-/ [) Z Y0 | HO(k-/ [)) < €, (22) ( 17 if :Ym~1n(k/ g) S 1
P (C(k, £) > Co | Ho(k, £)) <e. (23) and¢(k, £) < o
~ _ (’71 - &min(kv K))
From (19) and (20), we have q(k, 0) = S — 1), it 1< Aunin(k, £) <71
Yo = — log(e) (24) and((k, £) < (o
1., L 0, otherwise.
G = B, (1= (25) (29)

The thresholdy, is set to satisfy a certain significance level
whereF,-.,(x) denotes the standard chi-square cumulative dig > ¢)
tribution function, withy, degrees of freedom. Typically, we use
¢ = 0.01 andy = 32, S0 = 4.6 and(y = 1.67. P (Ymin(k, €) > 11 | Ho(k, £)) < &1 = 7 = —log(er).
The second iteration of smoothing includes only the power (30)

spectral components, which have been identified as containifgpically e1 = 0.05 andy, = 3. 3 _
primarily noise. We set the initial condition for the first frame Th€a priori speech absence probability estimator assumes

by S(k, 0) = S;(k, 0). Then, for¢ > 0 the smoothing in fre- SPeech is presen(k, £) = 0) whenever((k, £) > (o or

guency, employing the above voice activity detector, is obtainé in(k, £) > 71 That is, whenever the local measured power,
S(k, £), or the instantaneous measured poErk, /)|?, are

tiy relatively high compared to the noise pow#, Smin(k, £) =
S¢(k, £) = Ma(k, £). The estimator assumes speech is absight ¢) = 1)
K . . C 2 whenever both the local and instantaneous measured powers are
,L._Z;w b(i) L (k—i, O) [Y (k—i, 0)] w relatively low compared to the noise powérf, (k, £) < 1 and
- w .0 Y T(k=i, )£0  {(k, ) < o] In between, the estimator provides a soft transi-
22 (@) I(k—1, £) i=—w tion between speech absence and speech presence, based on the
R B value of yuin(k, £).
S(k, £ —1), otherwise. The main objective of combining conditions on both

(26)  Amin(k, £) and((k, £) is to prevent an increase in the estimated
L i _noise during weak speech activity, especially when the input
Smoothmg in time is given, as before, by a first-order recursi&\R is low. Weak speech components can often be extracted
averaging using the condition oﬁ(k, £). Sometimes, speech components
S‘(k, /) = aSS’(k, 1)+ (1 as)s’f(k‘, 0). 27) are so weak thagt(k-z ) i§ smaller thargy. In that case,.most of
the speech power is still excluded from the averaging process
We note that keeping the strong speech components out of tising the condition ony.,(k, £). The remaining speech
smoothing process enables improved minimum tracking. In p@emponents can hardly affect the noise estimator, since their
ticular, a larger smoothing parameter,J and smaller minima power is relatively low compared to that of the noise.
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[V. IMPLEMENTATION OF THE ALGORITHM within the current subwindow and tHé previous subwindow
In this section, we combine the time-varying recursive a/''nma- . . . :
eraging with the minima-controlled estimati)clmgof tagoriori | T_he |mpler_‘nentat|on of the IMCRA glgonthm is summarized
speech absence probability, and present the IMCRA noise e i'-:'g' 1. Typical values of t.he rgspecuve parameters, for a sam-
mation algorithm. pling rate of 16 kHz, are given in Table I.
The noise spectrum estimatk;(k, £), is initialized at the
first frame byAs(k, 0) = |Y(k, 0)|2. Then, at each framé
(¢ > 0), itis used, jointly with the current observatidf(k, ¢), The performance evaluation of the IMCRA method, and a
for estimating the noise power spectrum at the next fratrte, comparison to the MS method, consists of three parts. First, we
1. According to (12), we need to find the bias compensatidest the tracking capability of the noise estimators for nonsta-
factor 3, and the time-varying smoothing parametel(k, ). tionary noise. Second, we measure the segmental relative esti-

V. PERFORMANCEEVALUATION

Appendix | shows that the value gfis given by mation error for various noise types and levels. Third, we inte-
R - grate the noise estimators into a speech enhancement system,
8= m-l-e +e . (31) and determine the improvement in the segmental SNR. The re-
n—1=-3elt+(m+2)emn sults are confirmed by a subjective study of speech spectrograms

In particular, fory; = 3, we have = 1.47. The value of and informal listening tests.

da(k, £) is updated for each frequency bin and time fram The noise signals used in our evaluation are taken from the

e, . . . . .
using the speech presence probabilit¢, £), and expression Noisex92 database [22]. They include white Gaussian noise
(11) ’ (WGN), car noise, and F16 cockpit noise. A nonstationary

It follows from (7), that the computation of the speecIWGN was simulated by increas'ing the level of the stationary
presence probability requires an estimate forahgiori SNR  WCGN atarate of 2 dB/s for a period of three seconds, and some
¢(k, ¢). The “decision-directed” approach of Ephraim andime afterwards decreasing it back to the original level at the

Malah [6] is commonly used for that purpose. However waame rate. The speech signal is constructed from six different

obtained better performance with a modified version proposEferances, without intervening pauses. The utterances, half
in [4]. Specifically, thea priori SNR is estimated by rom male speakers and half from female speakers, are taken

from the TIMIT database [8]. The speech signal is sampled at

£k, 0) = aG¥, (k, £ = 1)y(k, £—1) 16 kHz_ and degraded by the various noise types Wit_h seg_mental
+(1 = a)max{v(k, £) = 1,0} (32) SNRs in the rangg-5, 10] dB. The segmental SNR is defined
by [18]
wherea is a weighting factor that controls the tradeoff between S |X (k, £) |2
noise reduction and speech distortion [1], [6] and 10 % ’
SegSNR=— > log - (35)
o ot Ll 2 2Dk, o))
A £k 0) 1 e € 4
Gu,(k, 1) = T e 2P| 3 - dt (33)
+ &k, £) Jo(k,0) where”L represents the set of frames that contain speech/and

its cardinality. The spectral analysis is implemented with Ham-
Oﬁréing windows of 512 samples length (32 ms) and 128 samples
rame update step.
Fig. 2(a) shows the periodograf (k, £)|?, a recursively
smoothed periodogram with a smoothing parameter set to 0.95,
aG2(k, £ — 1)y(k, £ — 1)+ (1 — a) max {y(k, £) — 1,0} and the noise powe¥,(k, £) estimated by the IMCRA method,
1—q(k, 0) for a F16 cockpit noise at 0 dB segmental SNR, and a single
(34) frequency bink = 40 (center frequency 1219 Hz). Fig. 2(b)
whereG(k, ¢) is the spectral gain function of the LSA estimatoplots the ideal, IMCRA, and MS noise estimates (the ideal noise
under speech presence uncertainty. The advantaﬁékofé) estimate is taken as the recursively smoothed periodogram of
over the original estimator, particularly for weak speech conthe noise|D(k, £)|?, with a smoothing parameter set to 0.95).
ponents and low input SNR, is discussed in some detail in [4Clearly, the IMCRA noise estimate follows the noise power
The estimator for thea priori speech absence probamore closely than the MS noise estimate. The update rate of
bility, G(k, ¢), (29), requires two iterations of time-fre-the MS noise estimate is inherently restricted by the size of the
quency smoothingq(k, ¢), S(k, £)) and minimum tracking minimum search windowI}). By contrast, the IMCRA noise
(Smin(k, £), Smin(k, £)). The minimum tracking is imple- estimate is continuously updated even during speech activity, as
mented by the method proposed in [12], [13], which providdeng as the speech components are not too large compared to the
a flexible balance between the computational complexity am@ise power. This is a major advantage of the IMCRA method,
the update rate of the minima values. Accordingly, we dividearticularly in adverse noise environments, which involve non-
the window of D samples intd/ sub-windows ofV’ samples stationary noise, weak speech components, and low input SNR.
(UV = D). Whenevel samples are read, the minimum of the Fig. 3 shows another example of the improved tracking capa-
current subwindow is determined and stored for later use. Thidity of the IMCRA estimator. In this case, the speech signal is
overall minimum is obtained as the minimum of past sampleegraded by nonstationary WGN at 0 dB segmental SNR. The

is the spectral gain function of thieog-Spectral Amplitude
(LSA) estimator when speech is surely present [7]. We n
that the original “decision-directed priori SNR estimator of
Ephraim and Malah [6], [11] is given by
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Initialize variables at the first frame for all frequency bins k:

Aa(k,0) = |V (k,0)[% Xa(k,0) = |Y (k,0)|% ~v(k,0) =1; Smin(k,0) = Sf(k,0);
S(k,0) = Sy (k,0); S(k,0) = Sy(k,0); Gu, (k,0) =1;  Spmin(k,0) = Ss(k,0);
Smin_sw(k) = S5 (k,0);  Spin_sw(k) = Sy (k,0).

Let j =0. % j is a counter for frames within a sub-window.

For all time frames ¢

For all frequency bins k

Compute the a posteriori SNR v(k, £) using Eq. (3), the a priori SNR é(k,i) using Eq. (32),
and the conditional gain Gy, (k,¢) using Eq. (33).

Compute the first iteration of smoothed power spectrum S(k,¢) using Egs. (14) and (15),
and update its running minimum: Spin (k,€) = min {Spin(k.€ = 1), S(k, O)}; Smin_sw (k) =
min{smin_sw(k)v S(k,f)}

Compute the indicator function I(k,f) for the voice activity detection using Egs. (18) and
(21).

Compute the second iteration of smoothed power spectrum S(k,€) using Eqgs. (26) and (27),
and update its running minimum: S'mi,,(k,f) = min{gmin(k,é -1), .§(k,€)}: Smin_sw(k) =
min { Smin_w (k) S(k,0)}.

Compute the a priori speech absence probability §(k,¢) using Egs. (28) and (29), the speech

presence probability p(k, ) using Eq. (7), and the time-varying smoothing parameter aq(k, )
using Eq. (11).

Update the noise spectrum estimate Aq(k, € + 1) using Egs. (10) and (12).
Let j=7+1.
Ifj==V

For all frequency bins &

Store Smin_sw(k), set Smin(k,£) to the minimum of the last U stored values of Smin_sw(k),
and let Spin_sw(k) = S(k,£).

Store gmin_sw(k)y set gmin (k g) to the minimum of the last U stored values of Smin_sw(k)v
and let Smin_sw(k) = g(k’é)

Let j =0.

Fig. 1. IMCRA noise estimation algorithm.

TABLE | in thea priori speech absence probability. This delay is smaller
VALUES O; PARAMETERS USED IN THE IMPLEMENTATION OF THE IMCRA thanD + \% frames, Since the recursive averaging iS Carried out
OISE ESTIMATOR, FOR A SAMPLING RATE OF 16 kHz . . . -
instantaneously. For decreasing noise powermtheori speech

w=1 s = 0.9 U—=8 V=15 absence probability gets larger and the time-varying smoothing
parameter gets smaller, which further shortens the delay of the
IMCRA estimator.
G =167 a=092 ag =085 [=147 A guantitative comparison between the IMCRA and MS esti-
b: Hanning window mation methods is obtained by evaluating the segmental relative
estimation error in various environmental conditions. The seg-
mental relative estimation error is defined by
ideal, IMCRA, and MS noise estimates, averaged out over the
frequency, are depicted in Fig. 3(b). The response of the IMCRA
estimator to increasing or decreasing noise power is essentially . 2
much faster than that of the MS estimator, due to the recursive Xk: [)‘d(k’ £) = Aa(k, 4)}
averaging mechanism. For increasing noise power, the MS esti- Segbrr = S A2 (k, 0)
mator lags behind with a delay & + V frames [13]. For de- , e
creasing noise power, the delay of the MS estimator stems from R
the fact that the minimum search window becomes effectivelyhere,(k, ¢) is the ideal noise estimatg,(k, ¢) is the noise
shorter, and therefore the bias compensation factor is practicalktimated by the tested method, ané the number of frames
too large. On the other hand, the delay of the IMCRA estimator the analyzed signal. Table Il presents the results of the seg-
in case of increasing noise power results from the increase in thental relative estimation error achieved by the IMCRA and
time-varying smoothing parameter, subsequent to the decrelsk® estimators for various noise types and levels. It shows that

D=120 Bpn=166 =46 -~ =3

&~
~

(36)

SIS
~

Il

o
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Fig. 2. Noise power estimation for a speech signal, degraded by F16 cockfig. 3. Noise power estimation for a speech signal, degraded by nonstationary
noise at 0 dB segmental SNR, and a single frequencykbie 40 (center white Gaussian noise at 0 dB segmental SNR. (a) Periodogram (dotted),
frequency 1219 Hz). (a) Periodogram (dotted), smoothed periodogram (fis@oothed periodogram (fine solid), and IMCRA noise estimate (heavy solid)
solid), and IMCRA noise estimate (heavy solid); (b) Ideal (top), IMCRAor a single frequency bi: = 33 (center frequency 1 kHz); (b) Ideal (fine
(center), and MS (bottom) noise estimates (top and bottom graphs are displasmitl), IMCRA (heavy solid), and MS (dotted) average noise estimates.

by £10 dB, for clarity).

mator consistently yields a higher improvement in the segmental

the IMCRA method obtains significantly lower estimation erroBNR, than the MS estimator, under all tested environmental con-
than the MS method. ditions. The fact that the benefit is greater for low input SNR

The segmental relative estimation error is a measure thafplies that weak speech components are better preserved when
weighs all frames in a uniform manner, without a distinctiothe noise is estimated by the IMCRA method. This is confirmed
between speech presence and absence. In practice, the estiya subjective study of speech spectrograms and informal lis-
tion error is more consequential in frames that contain speetdning tests.
particularly weak speech components, than in frames that conAnother major advantage of the IMCRA noise estimation
tain only noise. We therefore examine the performance of omethod, as discussed earlier, is its tracking capability under non-
estimation method when integrated into a speech enhancenstationary noise environments. In speech enhancement applica-
system. Specifically, the IMCRA and MS noise estimators at®ns, this quality is often not fully appreciated when consid-
combined with thé@ptimally-Modified Log-Spectral Amplitudeering theaverageimprovement in the segmental SNR, since
(OM-LSA) estimator, and evaluated both objectively using arariations in the statistics of the noise are usually sparse. How-
improvement in segmental SNR measure, and subjectively &yer, aframe-by-framerace of the improvement in the seg-
informal listening tests. The OM-LSA estimator [2], [4] is amental SNR, as illustrated in Fig. 4, revels that the effective-
modified version of the conventional LSA estimator [7], basedess of the IMCRA method is particularly notable during alter-
on a binary hypothesis model. The modification includes ation in noise characteristics. Fig. 4(a) and (b) are plots of the
lower bound for the gain, which is determined by a subjectivapeech waveform in noise-free and noisy conditions (additive
criteria for the noise naturalness, and exponential weightgnstationary WGN at-5 dB segmental SNR). Fig. 4(c) and
which are given by the conditional speech presence probabilifst) are, respectively, plots of the enhanced speech waveforms
Moreover, thea priori SNR is estimated using (32), rather thamsing the IMCRA and MS noise estimates. While the increase
the standard “decision-directed” estimator (34). in the segmental SNR, gained by the IMCRA method over the

Table Il summarizes the results of the segmental SNR IS method, is on average less than 1 dB in this example, it sur-
provement for various noise types and levels. The IMCRA espasses 5 dB in some instances [Fig. 4(e)].



COHEN: NOISE SPECTRUM ESTIMATION IN ADVERSE ENVIRONMENTS 473

TABLE I
SEGMENTAL RELATIVE ESTIMATION ERROR FORV ARIOUS NOISE TYPES AND LEVELS, OBTAINED USING THE MS AND IMCRA ESTIMATORS

Input SegSNR | Stationary WGN | Non-stationary WGN | Car interior noise | F16 cockpit noise
[dB] MS IMCRA | MS IMCRA MS IMCRA MS IMCRA
-5 0.119 0.056 0.321 0.082 0.401 0.129 0.250 0.114
0 0.149 0.065 0.350 0.093 - 0.404 0.131 0.265 0.119
5 0.177 0.085 0.365 0.114 0.356 0.135 0.255 0.124
10 0.216 0.118 0.353 0.151 0.288 0.131 0.234 0.143
TABLE Il

SEGMENTAL SNR IMPROVEMENT FORV ARIOUS NOISE TYPES AND LEVELS, OBTAINED USING THE MS AND IMCRA ESTIMATORS

Input SegSNR | Stationary WGN | Non-stationary WGN | Car interior noise | F16 cockpit noise
[dB] MS IMCRA MS IMCRA MS IMCRA MS IMCRA
-5 9.91 10.45 9.11 10.06 9.67 10.76 8.08 8.49
0 7.93 8.39 7.33 8.07 8.26 8.91 6.45 6.60
5 6.15 6.43 5.67 6.14 6.78 7.21 4.84 4.92
10 4.53 4.62 4.14 4.35 5.37 5.83 3.44 3.44

g VI. CONCLUSION
£ Recursive averaging is a commonly used procedure for es-
p . s 5 0 s 14 18 13 a0 timating the noise power spectrum during sections which do
Time [sec] not contain speech. However, rather than employing a voice ac-
(@ tivity detector and restricting the update of the noise estimator
o to periods of speech absence, we adapt the smoothing param-
E eter in time and frequency according to the speech presence
§ probability. The noise estimate is thereby continuously updated
5 ; 5 5 e 15 18 2o even during weak speech activity. We have proposed an esti-
Time [sec] mator for thea priori speech absence probability that is con-
(b) trolled by the minima values of a smoothed periodogram of the

noisy measurement. It combines conditions on both the instan-

taneous and local measured power, and provides a soft transi-

tion between speech absence and presence. This prevents an oc-

. . s 5 T 1 1 5 casional increase in the noise estimate during speech activity.
Time [sec] Furthermore, carrying out the smoothing and minimum tracking

in two iterations allows larger smoothing windows and smaller

minimum search windows, while reliably tracking the minima

Amplitude

(]
E even during strong speech activity. This yields a reduced vari-
§ ance of the minima values and shorter delay when responding
‘ to a rising noise power, which eventually improves the tracking
2 4 6 8 10 12 14 16 18 20 . . . .
Time [sec] capability of the noise estimator. We have shown that in nonsta-
(d) tionary noise environments and under low SNR conditions, the

IMCRA approach is extremely effective. In particular, it obtains

a lower estimation error, and when integrated into a speech en-
hancement system achieves improved speech quality and lower
residual noise.

L 1
0 500 1000 1500 2000 2500

Frame number
(e)
Fig. 4. Example of speech enhancement using the IMCRA and MS noise APPENDIX |

estimators. (a) Original speech waveform; (b) noisy speech waveform (additive DERIVATION OF THE BIAS COMPENSATION FACTOR
nonstationary white Gaussian noise-gb dB segmental SNR); (c) enhanced

speech waveform using the IMCRA noise estimate (SegSNRO05 dB); (d) The factor3 in (12)' by definition, compensates the bias of
enhanced speech waveform using the MS noise estimate (SegSNRL dB

and (e) trace of the increase in segmental SNR, gained by the IMCRA metru:?ﬁa noise spectrum estimator Whe':] .S_peeCh is absent'. It_Stems
over the MS method. from Egs. (10) and (13) and the definition of tleposteriori
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SNR that distributed. Substituting (14) into (15), the recursively averaged
periodogram can be written as
5= E{1-ak, 0)} (37)
 E{(1—alk, )y(k, ¢ 0 vox )
By (7), the conditional speech presence probabijlity, /) de- i=-w j=0

X o (43)
generates, in the absencg of spegch,(¢) = 0), to thea Prorn ¢ we approximateS(k, ¢) as the sum of., squared mutually
speech presence probability-q(k, K)_' Hence, (11) 'mP"eS that independent normal variables, then its density and distribution
the value ofg3 is completely determined by the particular estir | ctions can be obtained by

mator for thea priori speech absence probability

v ~ M, [T
p= A D) NE fawo =i e () @9
E{q(k, £)y(k, £)} £(k, £)=0 L
In our case, the estimate for thgriori speech absence prob- stk.0(®) X ()\d(k, Z)) (45)

ability, g(k, ¢), is given by (29). Since we are using a relatively .
low significance level in the first iteration (= 0.01), the con- Wherefyz,,(z) andFy:,, (x) denote, respectively, the standard
ditional PDF 0f3,min (k. £) in the absence of speech is approxigh"square density and distribution functions, withlegrees of

mately the same as that 9fi,,(k, ¢) freedom. Specifically
. 1/2=1 o—(2/2)
. PV my o= Tmin (s O (5 (1 oy e u(z)
f ('Ymm(k-/ K) | Ho(kv ﬂ)) € “(’Ymm(kv ﬁ)) (39) fx‘;u(x) = /2 (%) (46)
Similarly, the conditional PDF of,(k, ¢) in the absence of D(e =
; : (£, %) ul2)
speech is approximately the same as that/@f, ¢). Then Fioy(z) = (4 (47)
by (23), the probability of((k, £) > (o is relatively low 2

(~¢€). Hence, in the absence of speech we can assume gk e () is the gamma function and
A

C(k, £) < Co for all k and/. Accordingly I(a,z) = [Te't*~'dt is the incomplete gamma
function. We note thaf:, the equivalent degrees of freedom,

E{q(k, £) | &(k, £) = 0 is determined by the smoothing parametey and the

%/1 e~ dz"‘/m NT2 =2y, window function b. For a normalized Hanning window

0 1 n-1 function of size2w + 1, it was found experimentally that
_, 1 o, 20 p (14 as)/(1—as)) (14 0.7_w). _
R (7 —e™™) (40) The value omein(k_, ) [(16)] is based onD successive

and values of S(k, ¢), which are clearly correlated. However,

to approximate the statistics df,,in(k, £), we assume that

Bk, O)y(k, £) | £(k, £) = 0} Smin(k, £) is based on equivaler® i.i.d. random variables.

N 1 _ Moy 222 J Hence, the probability density function 6%, (k, ¢) is given
_/0 ze Z+/1 P e Z by [9] and [13]
3 2 D-
=1- ] el 4 11——1—1 e . (41) Ssmnk,0)(@) = D (1 = Fs,, 0y()) ' fsk,0(2).  (48)
1 — 1 —

Sinceymin(k, £) is defined as the ratio of two random variables,
|Y (K, £))? and Spmin(k, £) scaled byByun,, its density function
is given by [17]

Substituting (40) and (41) into (38), we have

5= m—l—et4e™m
oy —1=3et 4 (pp+2en’

(42)
Fronin (e, 0) ()
:/ Brain ¥ f1y (k, 0)2, Sunin (k, ) (Bmin Y 7, y) dy.  (49)
APPENDIX I 0

STATISTICS OF Ymin AND Similarly, the density function of (k, £) is given by

Generally, successive values|Bf(k, £)|? are correlated, and
there is no closed form solution for the probability density funct: i, ¢ ()

tions of ymin(k, £) and((k, ¢). However, based on certain as- o0

sumptions and results from [12], [13], we can obtain an approxi- = / Buiny f5(k, 0), Suin(k, 0)(Bminy £, y) dy. (50)
mate solution. To simplify notation, speech absence is implicitly 0

assumed throughout this Appendix. For largeD and p (D, p > 10), we can assume that

Let the spectral power values of the noisy measuremesit,(k, £) is independent of eithefY (k, £)|> or S(k, ¢).
|Y(k, £)]?> be independent, exponentially and identicallfFurthermore, the variance 6f,;, (k, ¢) is significantly smaller
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than its squared mean value. Hence, (49) and (50) can bgo] E.J. GumbelStatistics of Extremes New York: Columbia Univ. Press,

simplified to 1958. : N .
[10] H. G. Hirsch and C. Ehrlicher, “Noise estimation techniques for robust

speech recognition,” ifProc. 20th IEEE Int. Conf. Acoustics, Speech,
fv (k, e) / fs.. (k, 0) ( )BmmE{Smm(k f)} Signal Processing (ICASSP’95petroit, MI, May 8-12, 1995, pp.
153-156.

. [11] D. Malah, R. V. Cox, and A. J. Accardi, “Tracking speech-presence un-
iy ol (7 BuinE {Swin(k, £)}) dy (51) certainty to improve speech enhancement in nonstationary noise envi-
ronments,” inProc. 24th IEEE Int. Conf. Acoustics, Speech, Signal Pro-
Jete, o ( / FSmin (e, ©)(¥) Brin E {Smin(k, £)} cessing (ICASSP'99Phoenix, AZ, Mar. 15-19, 1999, pp. 789-792.
[12] R. Martin, “Spectral subtraction based on minimum statisticsProc.
7th Eur. Signal Processing Conf. (EUSIPCO’98)inburgh, U.K., Sept.
Is(k,0) (% Bunin B {Sumin (5, £)}) dy.— (52) 13-16. 1004, Pp. 1182. 1185, ( pinburg P
[13] ——, “Noise power spectral density estimation based on optimal
smoothing and minimum statistics,/EEE Trans. Speech Audio
Processingvol. 9, pp. 504-512, July 2001.

Substituting (17) into (51) and (52), we have

Frmin e, 0(2) = Aa(E, £) fiy e, 02 (2 Aa(k, £)) [14] R.J. McAulay and M. L. Malpass, “Speech enhancement using a soft-
decision noise suppression filtetEEE Trans. Acoust., Speech, Signal
= fv(k;i)(x) (53) Processingvol. ASSP-28, pp. 137-145, Apr. 1980.
[15] B. L. McKinley and G. H. Whipple, “Model based speech pause detec-
f((k,z)(w) ~Aa(k, £) fs(k, 0) (z Aa(k, £)) tion,” in Proc. 22th IEEE Int. Conf. Acoustics, Speech, Signal Processing
=u fx2-u(M$)- (54) (ICASSP’97)Munich, Germany, Apr. 20-24, 1997, pp. 1179-1182.

[16] J.Meyer, K. U. Simmer, and K. D. Kammeyer, “Comparison of one- and
two-channel noise-estimation techniques,Pioc. 5th Int. Workshop on
Acoustic Echo and Noise Control (IWAENC'9Zpndon, U.K., Sept.
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