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Chapter 2. Linear Regression

“ 1. Asimple overview of statistical learning

1.1. Concepts
1.2. Statistical modeling

1.3. Model accuracy

¢ 2. Linear regression

2.1 Simple linear regresion
2.2 Multiple linear regression

2.3 Other considerations
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1. A simple overview of statistical learning

1.1. Concepts
» Statistical learning vs machine learning
Machine learning is a general concept in the artificial intelligence

Statistical learning more emphasizes on statistical models and their interpretability, precision and uncertainty
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1. A simple overview of statistical learning

1.1. Concepts
» Statistical learning vs machine learning

« Regression: predict a continuous or quantitative ouput value
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1. A simple overview of statistical learning

1.1. Concepts
» Statistical learning vs machine learning
« Regression: predict a continuous or quantitative ouput value

 Classification: predict a non-numerical, categorical, or qualitative value
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1.1. Concepts

1. A simple overview of statistical learning

» Statistical learning vs machine learning

« Regression: predict a continuous or quantitative ouput value

 Classification: predict a non-numerical, categorical, or qualitative value

 Clustering: observe input with no output, determine if there are groups or clusters
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1. A simple overview of statistical learning

1.2. Statistical modeling

Suppose that we observe a response Y and p different predictors, X;, X,, ..., X,,. We assume that there is
some relationship between Y and X = (X1, X5, ..., X;;) such that

Y=f(X)+e¢€

here € is a random error term which is independent of X and has zero mean
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some relationship between Y and X = (X1, X5, ..., X;;) such that
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here € is a random error term which is independent of X and has zero mean
 Prediction: a set of inputs X are readily available, but the output Y cannot be easily obtained
V=700

f represents the estimate of £, and ¥ represents the prediction for Y



1. A simple overview of statistical learning

1.2. Statistical modeling

Suppose that we observe a response Y and p different predictors, X;, X,, ..., X,,. We assume that there is
some relationship between Y and X = (X1, X5, ..., X;;) such that

Y=f(X)+e¢€

here € is a random error term which is independent of X and has zero mean

 Prediction: a set of inputs X are readily available, but the output Y cannot be easily obtained

V=7
f represents the estimate of £, and ¥ represents the prediction for Y
E(Y-Y)* = E[f(X)+e— f(X)
= [f(X)— ]‘?(X)}2 + Var(e)
h ~~ d N———
Reducible Irreducible

Remark: irreducible error provides an upper bound on the prediction accuracy for Y ,
which is unknown in practice!



1. A simple overview of statistical learning

1.2. Statistical modeling

Suppose that we observe a response Y and p different predictors, X;, X,, ..., X,,. We assume that there is
some relationship between Y and X = (X1, X5, ..., X;;) such that

Y=f(X)+e¢€

here € is a random error term which is independent of X and has zero mean

* Inference: understand the way that Y is affected as X, X;, ..., X;, change
for instance:
which predictors are more important to the output Y ?

how to quantify the relationship between Y and each predictor X;?



1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f

Training data set: contains all necessary observations for teaching our method how to learn/estimate f
« Parametric methods

« Non-parametric methods



1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f
Training data set: contains all necessary observations for teaching our method how to learn/estimate f

« Parametric methods
The mapping relationship f is clearly assumed, e.g. a linear model
FX) = Bo + P1X1 + BoXo + -+ +B,Xp
Fit or train the model based on the observations from the training set
* . A p
B* = argmm”Y — f(X)”L
B 4

with or without contraints

where B* = [Bo = PBplT € RP*1 will be the best parameters of the model



1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f

Training data set: contains all necessary observations for teaching our method how to learn/estimate f

« Parametric methods

Advantage: reduce the problem of estimating f down to estimating a set of parameters;
Disadvantage: the estimation will be poor if the selected model £ is far from the true f
Balancing: more flexible model can fit more different functional forms for f

overfit the data as the model follow the noise too much
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1.2. Statistical modeling

1.2.1 Estimating f
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1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f

Training data set: contains all necessary observations for teaching our method how to learn/estimate f

« Parametric methods

Advantage: reduce the problem of estimating f down to estimating a set of parameters;
Disadvantage: the estimation will be poor if the selected model £ is far from the true f
Balancing: more flexible model can fit more different functional forms for f

overfit the data as the model follow the noise too much

* Non-parametric methods

Advantage: do not assume a particular functional form for f

Disadvantage: more observation is required comparing to parametric methods, overfit still exsits



1. A simple overview of statistical learning
1.2. Statistical modeling

1.2.1 Estimating f

eLuOOU‘

/",!,’,"II':
S
T

7 i a e

7 e et

e

e

e 7

'.‘,.'4?

T A
SEEEr e
g A I
e

—

?
o
3
o

Simulated income data set based on the ideal blue surface

Y=f(X)+e¢€
Red dots: 30 observed individuals

A smooth thin-plate spline fit to the income data

B* = argmin||Y — f(X)”IZ
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1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f
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1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f

1.2.2 Trade-off between prediction accuracy and model interpretability

less flexiable small range of shapes to estimate f easy to explain

more flexiable large range of shapes to estimate f hard to explain



1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f

1.2.2 Trade-off between prediction accuracy and model interpretability
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1. A simple overview of statistical learning

1.2. Statistical modeling
1.2.1 Estimating f
1.2.2 Trade-off between prediction accuracy and model interpretability
1.2.3 Supervised vs unsupervised learning

« Supervised learning

for each observation of the predictor x;, there is an associated response y;

wish to understand the relationship between the response and the predictor

A A
>
? ‘A 1 ." 7 supervised &
A® learni
AO'AO . AAa eamning .

training set
the whole data set



1. A simple overview of statistical learning

1.2. Statistical modeling

1.2.1 Estimating f

1.2.2 Trade-off between prediction accuracy and model interpretability

1.2.3 Supervised vs unsupervised learning
« Supervised learning
« Unsupervised learning

each observation only has predictor x;, there is no associated response y;

A A | group 1: .'Q‘O'O
. ‘A unsupervised g
SN | )
AO'AQ learning group 2: AAAAAA‘




1. A simple overview of statistical learning

1.2. Statistical modeling
1.2.1 Estimating f
1.2.2 Trade-off between prediction accuracy and model interpretability
1.2.3 Supervised vs unsupervised learning

1.2.4 Regression vs classification

» Regression: quantitative variables take on numerical values

Classification: qualitative variables take on values in one of K different classes or categories



1. A simple overview of statistical learning

1.3. Model accuracy

1.3.1 Measuring the quality of fit

Regression: Mean Squared Error (MSE)

1 T ) ‘
MSE == (yi — f(x:))*
n;(y f(i))

Training data set: Tr = {x;, y;}V MSET, = Ave;etelyi — f(a4)]?
Test data set: Te = {x;, y; }M MSETe = Avejete|ys — f(a4)]?

Remark: choose a method that gives the lowest test MSE, as opposed to the lowest training MSE
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1.3. Model accuracy
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1. A simple overview of statistical learning

1.3. Model accuracy

1.3.1 Measuring the quality of fit
Regression: Mean Squared Error (MSE)

1 T R ‘
MSE == (yi — f(z:))?

T “
1=1

Training data set: Tr = {x;, y;}V MSET, = Ave;etelyi — f(a4)]?
Test data set: Te = {x;, y; }M MSETe = Avejete|ys — f(a4)]?

Remark: choose a method that gives the lowest test MSE, as opposed to the lowest training MSE

Real world: easy to compute the training MSE based on the training data set
difficult to estimate the test MSE because usaually no test data are availiable
cross-validation !!!



1. A simple overview of statistical learning

1.3. Model accuracy
1.3.1 Measuring the quality of fit
1.3.2 The bias-variance trade-off
suppose we have fit a model f(x) to some training data Tr, and let (x,, y,) be a test observation

iIf the true model isY = f(X) + € (with f(x) = E(Y|X = x))

-~

2 . . .
E (yo _ f(;ro)) — Var(f(x0)) + [Bias(f (x0))]? + Var(e)
Expected test MSE Bias(f(x0))] = E[f(x0)] — f(x0)
to minimize the expected test error, we need a statistical learning method with low variance and low bias

the more flexibility the higher variance, but the lower bias!!!



1. A simple overview of statistical learning

1.3. Model accuracy

1.3.1 Measuring the quality of fit

1.3.2 The bias-variance trade-off E (yo — f(;ro)) — Var(f(xo)) + [Bias(f(z0))]* + Var(e)
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1. A simple overview of statistical learning

1.3. Model accuracy
1.3.1 Measuring the quality of fit
1.3.2 The bias-variance trade-off

1.3.3 The classification setting

. l T A
Training error rate - X; I(yi # vi)
—

I(y; # y,) is an indicator variable that equals 1 if y; # y; and zero if y; = ¥;

Test rate Ave (I(yo # 90))

The Bayes clasifier: assigns each observation to the most likely class, given its predictor values

K-nearest neighbors (KNN) classifier — Pr(Y = j|X = 2() = % Z I(y; =)
i€No



1. A simple overview of statistical learning

1.3. Model accuracy
1.3.1 Measuring the quality of fit
1.3.2 The bias-variance trade-off

1.3.3 The classification setting

Simulated data set consisting of 100 observations in two groups Idea of KNN




1. A simple overview of statistical learning

1.3. Model accuracy
1.3.1 Measuring the quality of fit
1.3.2 The bias-variance trade-off

1.3.3 The classification setting

Simulated data set consisting of 100 observations in two groups

KNN: K=10




1. A simple overview of statistical learning

1.3. Model accuracy
1.3.1 Measuring the quality of fit
1.3.2 The bias-variance trade-off

1.3.3 The classification setting KNN: K=1 KNN: K=100

Simulated data set consisting of 100 observations in two groups




1. A simple overview of statistical learning

1.3. Model accuracy
1.3.1 Measuring the quality of fit
1.3.2 The bias-variance trade-off

1.3.3 The classification setting
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