Mathematical Foundations of Data Analysis (MFDA) - Il

Bogiang Huang

huang@math.uni-koeln.de

Institute of Mathematics, University of Cologne, Germany

Chapter 1. Basics

¢ 1. Probablity and Information Theory

1.1. Basic defintions and rules in probability theory

1.2. Basic definitons and rules in information theory

¢ 2. Numerical computation

2.1 Basic knowledge in numerical computation
2.2 Basic knowledge in optimizations

2.2.1 Gradient-based optimization
2.2.2 Constrained optimization

s 3. Application: statitical model based data denoising (in tutorial after lecture this Thursday)

Reference:

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, Chapter 3-4, MIT Press, 2016.

[2] A. Antoniou, W.-S. Lu, Practical optimization: algorithms and engineering applications, Springer, 2007.

[3] I. Cohen, Noise spectrum estimation in adverse environments: improved minima controlled recursive averaging, |IEEE
Trans. Acoust., Speech, Signal Processing, vol. 11, no. 5, pp. 466-475, 2003.

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process
2.1 Overflow and Underflow
« Underflow occurs when numbers near zero are rounded to zero
rounding error, avoid division by zero, ...
* Overflow occurs when numbers with large magnitude are approximated as oo or —co

Example: the softmax function

exp(x;)

- >io1exp(x;)

softmax(x);

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process
2.2 Poor Conditioning
how rapidly a function changes with respect to small changes in its inputs
rounding errors in the inputs can result in large changes in the output
Example: consider a function f(xz) = A 'z
condition number of matrix A € R7*" defined as ratio of the largest and smallest eigenvalue

max |
.j | Aj

when it is large, matrix inversion is sensitive to the input

Remark: poorly conditioned matrices amplify pre-existing errors when we multiply by its inverse

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) x € R"

minimizer objective/cost/loss/error function

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) x € R"
minimizer objective/cost/loss/error function
2.0 T T T T T T T
el ™ e % Gradient Descent Method
SF N\ Global minimum at z = 0. /7
\ S;in('e f'{ri :l(). gradient /
descent halts here. - -
Lo N - i consider a real-valued function y = f(x)
N\ 7
0.5} = -
o g ¥ its derivative gives the slope of f(x) at point x
s For = < 0, we have f'(.r\) A, ’F()r x > 0, we have f'(x) >lo,
08| st ris e © > | f(x+e) = f(z)+ef(x)
-10} — f(x — esign(f'(xz))) is less than f(x) for small enough ¢
- Fiz) = :,.1“)
—15F B . . .
— f@)=g we can reduce f(x) by moving x in small steps with
—2.(12.() —ll..’) —11.() —l()..-') ()1.0 Ol..’) 11.() 11.:'> 2.0 OppOSite Sign Of the derivative

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) x € R"
minimizer objective/cost/loss/error function

critical/stationary point exists at f'(x) =0

Minimum Maximum Saddle point

N ~

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) xr e R"

minimizer objective/cost/loss/error function

critical/stationary point exists at f'(x) =0
This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

= | Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

This local minimum performs
poorly and should be avoided.

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) x e R"
minimizer objective/cost/loss/error function
. . . . of af 17
critical/stationary point exists at Vyf(x) = [— -+ -—| =0
X1 0xp
gradient

directional derivative in direction u (a unit vector) is the slope of the function f in direction u, u € R"

f(x+ au) — f(x) of (x + au)

a Jda

=u' Vof (%)

a=0

Vuf(x) = gzi—rfcl)

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) x e R"
minimizer objective/cost/loss/error function
. . . . of af 17
critical/stationary point exists at Vyf(x) = [— -+ -—| =0
X1 0xp
gradient

directional derivative in direction u (a unit vector) is the slope of the function f in direction u, u € R"

x+au)— f(x df (x + au
Vuf(X) = lim f() f() f() —uT fo(x)
=0 a a
a=0
Min,, Ty u' V. f(x) = u’Lr%ilrllzllluIIZIIfo(x)Ilz cos 6 u,rﬁifllzl cos 6

u=-V,f(x) steepest/gradient descent

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) x e R"
minimizer objective/cost/loss/error function
. . . . of af 17
critical/stationary point exists at Vyf(x) = [— -+ -—| =0
X1 0xp
gradient

directional derivative in direction u (a unit vector) is the slope of the function f in direction u, u € R"
u=-V,f(x) steepest/gradient descent

iteration: x,,q1 = X — € V,.f(xy)

€ : learning rate

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) T
minimizer objective/cost/loss/
_ . . . af af T
critical/stationary point exists at V,.f (x) = T A
X1 0xn
gradient

directional derivative in direction u (a unit vector) is the slop
u=-V,f(x) steepest/gradient descent

iteration: x,,q1 = X — € V,.f(xy)

€ : learning rate

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

x® = argmin f(x) x e R"
minimizer objective/cost/loss/error function
. . . . of af 17
critical/stationary point exists at Vyf(x) = [— -+ -—| =0
X1 0xp
gradient

directional derivative in direction u (a unit vector) is the slope of the function f in direction u, u € R"
u=-V,f(x) steepest/gradient descent

iteration: xj,11 = X — € Vo f (x3) line search: ¢, = argmin f(xy + € Vo f (xx))

€. learning rate

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process
2.3 Gradient-Based Optimization
2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

f: R™ —> R™ Jacobian Matrix J € R™ ™, where J; ; = aixjfi(x)

0

2
f: R™ >R Hessian Matrix H € R™ ™ where H; ; = o] (%)
(0X

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process
2.3 Gradient-Based Optimization

2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

f: R™ —> R™ Jacobian Matrix J € R™ ™, where J; ; = aixjfi(x)

: : 92
f: R™ >R Hessian Matrix H € R™ ™ where H; ; = o] (%)
1]
Negative curvature No curvature Positive curvature . .

second derivative, curvature
positive/negative (semi-) definite

n n = function f is convex/concave

=~ ~ ~ x

~ N
~ N\

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization
2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

f: R™ —> R™ Jacobian Matrix J € R™ ™, where J; ; = aixjfi(x)

02
6xi6xjf(x)

: R™ > R Hessian Matrix H € R™™ where H; ; =
\J

consider a second-order Taylor approximation of f(x)
| | 1
fla) = f() + (@ —a') g+ S(x—a'V) H(z -z
where g is the gradient and H is the Hessian at x(9. If we set x = x(¥) — ¢ g

_ _ 1
@ —eg)~ f(2") —eg'g+ 5 ¢g Hg

if gT Hg is positive g7

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices 20

f: R™ > R™ Jacobian Matrix J € R™™ where J; ; = %fi(x) 10
J s
, &
f: R™ >R Hessian Matrix H € R™ ™ where H; ; = ax(i,,xf(x) ~10
igxj
consider a second-order Taylor approximation of f(x) -
| | . 1 . e —m -0 010 2
fla) = fa®)+ (z—al") g+ Sz~ 2V) H(x)

where g is the gradient and H is the Hessian at x(9. If we set x = x(¥) — ¢ g

| | 1
f@? —eg) = f(x) —eg'g+ ;g Hg

if gT Hg is positive T
€ = J poor conditioned Hessian leads to a poor gradient descent!!!

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process
2.3 Gradient-Based Optimization
2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

Newton’s method

f@) = f@0)+@-a®) Ve f@®) 5 (@-20) () @-2)

»
.

solve for the critical point of this function

*

2t =2 — H(f)(z")"'V, f(z)

Extension:
Gauss-Newton method
Conjugate-direction method
Quasi-Newton method

[2] A. Antoniou, W.-S. Lu, Practical optimization: algorithms and engineering applications, Springer, 2007.

2. Numerical Computation

¢ If there is no analytical solution, approximate/estimate it via iteratively numerical process
2.4 Constrained Optimization
minimize f(x)

subject to: a;(x)

I
-
e,
Q
=
I
—_
Do
S

cj(x) = 0 for j = 1’? 2; q
feasible region R ={x: a;(x) =0fori=1,2, ..., p, ¢j(x) >0forj=1,2, ..., ¢}
Karush-Kuhn-Tucker (KKT) approach, or generalized Lagrangian approach
L(x, A, a) = f(x) + Z s (x) + z aic;(x)
L J

First-order sufficient/necessary conditions for a minimum
Second-order sufficient/necessary conditions for a minimum

[2] A. Antoniou, W.-S. Lu, Practical optimization: algorithms and engineering applications, Springer, 2007.

