
Mathematical Foundations of Data Analysis (MFDA) - II

Boqiang Huang

Institute of Mathematics, University of Cologne, Germany

2019.04.09-11

huang@math.uni-koeln.de

Chapter 1. Basics

❖ 1. Probablity and Information Theory

1.1. Basic defintions and rules in probability theory

1.2. Basic definitons and rules in information theory

2.1 Basic knowledge in numerical computation

❖ 2. Numerical computation

2.2 Basic knowledge in optimizations

2.2.1 Gradient-based optimization

2.2.2 Constrained optimization

❖ 3. Application: statitical model based data denoising (in tutorial after lecture this Thursday)

Reference:

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, Chapter 3-4, MIT Press, 2016.

[2] A. Antoniou, W.-S. Lu, Practical optimization: algorithms and engineering applications, Springer, 2007.

[3] I. Cohen, Noise spectrum estimation in adverse environments: improved minima controlled recursive averaging, IEEE

Trans. Acoust., Speech, Signal Processing, vol. 11, no. 5, pp. 466-475, 2003.

2019.04.09-11

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.1 Overflow and Underflow

• Underflow occurs when numbers near zero are rounded to zero

2019.04.09-11

rounding error, avoid division by zero, …

• Overflow occurs when numbers with large magnitude are approximated as ∞ or −∞

Example: the softmax function

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.2 Poor Conditioning

how rapidly a function changes with respect to small changes in its inputs

2019.04.09-11

rounding errors in the inputs can result in large changes in the output

Example: consider a function

condition number of matrix defined as ratio of the largest and smallest eigenvalue

when it is large, matrix inversion is sensitive to the input

Remark: poorly conditioned matrices amplify pre-existing errors when we multiply by its inverse

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

Gradient Descent Method

consider a real-valued function 𝑦 = 𝑓(𝑥)

its derivative gives the slope of 𝑓(𝑥) at point 𝑥

we can reduce 𝑓(𝑥) by moving 𝑥 in small steps with

opposite sign of the derivative

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

critical/stationary point exists at 𝑓′ 𝑥 = 0

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

critical/stationary point exists at 𝑓′ 𝑥 = 0

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

critical/stationary point exists at ∇𝒙𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
⋯

𝜕𝑓

𝜕𝑥𝑛

𝑇

= 0

gradient

directional derivative in direction 𝒖 (a unit vector) is the slope of the function f in direction 𝒖, 𝒖 ∈ ℝ𝑛

∇𝒖𝑓 𝒙 = lim
𝛼→0

𝑓 𝒙 + 𝛼𝒖 − 𝑓 𝒙

𝛼
ቤ

𝜕𝑓 𝒙 + 𝛼𝒖

𝜕𝛼
𝛼=0

= 𝒖𝑇 ∇𝒙𝑓 𝒙

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

critical/stationary point exists at ∇𝒙𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
⋯

𝜕𝑓

𝜕𝑥𝑛

𝑇

= 0

gradient

directional derivative in direction 𝒖 (a unit vector) is the slope of the function f in direction 𝒖, 𝒖 ∈ ℝ𝑛

∇𝒖𝑓 𝒙 = lim
𝛼→0

𝑓 𝒙 + 𝛼𝒖 − 𝑓 𝒙

𝛼
ቤ

𝜕𝑓 𝒙 + 𝛼𝒖

𝜕𝛼
𝛼=0

= 𝒖𝑇 ∇𝒙𝑓 𝒙

min𝒖, 𝒖𝑇𝒖=1 𝒖
𝑇 ∇𝒙𝑓 𝒙 = min

𝒖, 𝒖𝑇𝒖=1
𝒖 2 ∇𝒙𝑓 𝒙 2 cos 𝜃 min

𝒖, 𝒖𝑇𝒖=1
cos 𝜃

𝒖 = −∇𝒙𝑓 𝒙 steepest/gradient descent

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

critical/stationary point exists at ∇𝒙𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
⋯

𝜕𝑓

𝜕𝑥𝑛

𝑇

= 0

gradient

directional derivative in direction 𝒖 (a unit vector) is the slope of the function f in direction 𝒖, 𝒖 ∈ ℝ𝑛

𝒖 = −∇𝒙𝑓 𝒙 steepest/gradient descent

iteration: 𝒙𝑘+1 = 𝒙𝑘 − 𝜖 ∇𝒙𝑓 𝒙𝑘

𝜖 : learning rate

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

critical/stationary point exists at ∇𝒙𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
⋯

𝜕𝑓

𝜕𝑥𝑛

𝑇

= 0

gradient

directional derivative in direction 𝒖 (a unit vector) is the slope of the function f in direction 𝒖, 𝒖 ∈ ℝ𝑛

𝒖 = −∇𝒙𝑓 𝒙 steepest/gradient descent

iteration: 𝒙𝑘+1 = 𝒙𝑘 − 𝜖 ∇𝒙𝑓 𝒙𝑘

𝜖 : learning rate

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

objective/cost/loss/error function

2019.04.09-11

minimizer

critical/stationary point exists at ∇𝒙𝑓 𝒙 =
𝜕𝑓

𝜕𝑥1
⋯

𝜕𝑓

𝜕𝑥𝑛

𝑇

= 0

gradient

directional derivative in direction 𝒖 (a unit vector) is the slope of the function f in direction 𝒖, 𝒖 ∈ ℝ𝑛

𝒖 = −∇𝒙𝑓 𝒙 steepest/gradient descent

iteration: 𝒙𝑘+1 = 𝒙𝑘 − 𝜖𝑘 ∇𝒙𝑓 𝒙𝑘

𝜖𝑘: learning rate

line search: 𝜖𝑘 = argmin 𝑓 𝒙𝑘 + 𝜖 ∇𝒙𝑓 𝒙𝑘

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

2019.04.09-11

2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

𝒇: ℝ𝑚 → ℝ𝑛 Jacobian Matrix 𝑱 ∈ ℝ𝑛×𝑚, where 𝑱𝑖,𝑗 =
𝜕

𝜕𝑥𝑗
𝑓𝑖(𝒙)

𝑓: ℝ𝑚 → ℝ Hessian Matrix 𝑯 ∈ ℝ𝑚×𝑚, where 𝑯𝑖,𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝒙)

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

2019.04.09-11

2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

𝒇: ℝ𝑚 → ℝ𝑛 Jacobian Matrix 𝑱 ∈ ℝ𝑛×𝑚, where 𝑱𝑖,𝑗 =
𝜕

𝜕𝑥𝑗
𝑓𝑖(𝒙)

𝑓: ℝ𝑚 → ℝ Hessian Matrix 𝑯 ∈ ℝ𝑚×𝑚, where 𝑯𝑖,𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝒙)

second derivative, curvature

positive/negative (semi-) definite

function f is convex/concave

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

2019.04.09-11

2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

𝒇: ℝ𝑚 → ℝ𝑛 Jacobian Matrix 𝑱 ∈ ℝ𝑛×𝑚, where 𝑱𝑖,𝑗 =
𝜕

𝜕𝑥𝑗
𝑓𝑖(𝒙)

𝑓: ℝ𝑚 → ℝ Hessian Matrix 𝑯 ∈ ℝ𝑚×𝑚, where 𝑯𝑖,𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝒙)

consider a second-order Taylor approximation of 𝑓(𝒙)

where 𝒈 is the gradient and 𝑯 is the Hessian at 𝒙(0). If we set 𝒙 = 𝒙(0) − 𝜖 𝒈

if 𝒈𝑇𝑯𝒈 is positive

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

2019.04.09-11

2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

𝒇: ℝ𝑚 → ℝ𝑛 Jacobian Matrix 𝑱 ∈ ℝ𝑛×𝑚, where 𝑱𝑖,𝑗 =
𝜕

𝜕𝑥𝑗
𝑓𝑖(𝒙)

𝑓: ℝ𝑚 → ℝ Hessian Matrix 𝑯 ∈ ℝ𝑚×𝑚, where 𝑯𝑖,𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑓(𝒙)

consider a second-order Taylor approximation of 𝑓(𝒙)

where 𝒈 is the gradient and 𝑯 is the Hessian at 𝒙(0). If we set 𝒙 = 𝒙(0) − 𝜖 𝒈

if 𝒈𝑇𝑯𝒈 is positive

poor conditioned Hessian leads to a poor gradient descent!!!

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.3 Gradient-Based Optimization

2019.04.09-11

2.3.1 Beyond the Gradient: Jacobian and Hessian Matrices

Newton’s method

solve for the critical point of this function

Extension:

Gauss-Newton method

Conjugate-direction method

Quasi-Newton method

[2] A. Antoniou, W.-S. Lu, Practical optimization: algorithms and engineering applications, Springer, 2007.

2. Numerical Computation

❖ If there is no analytical solution, approximate/estimate it via iteratively numerical process

2.4 Constrained Optimization

2019.04.09-11

feasible region

Karush-Kuhn-Tucker (KKT) approach, or generalized Lagrangian approach

𝐿 𝒙, 𝝀, 𝜶 = 𝑓 𝒙 +෍

𝑖

𝜆𝑖𝑎𝑖(𝒙) +෍

𝑗

𝛼𝑗𝑐𝑗(𝒙)

First-order sufficient/necessary conditions for a minimum

Second-order sufficient/necessary conditions for a minimum

[2] A. Antoniou, W.-S. Lu, Practical optimization: algorithms and engineering applications, Springer, 2007.

