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Abstract. For many applications, nonuniformly distributed functional data is given which lead
to large–scale scattered data problems. We wish to represent the data in terms of a sparse
representation with a minimal amount of degrees of freedom. For this, an adaptive scheme
which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we
investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a least-
squares approximation of the data is computed. We take into account different requests arising
in large-scale scattered data fitting: we discuss the fast iterative solution of the least square
systems, regularization of the data, and the treatment of outliers. A particular application
concerns the approximate continuation of harmonic functions, an issue arising in geodesy.
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1 INTRODUCTION

Assume that there is a set X = {xi}i=1,...,N of irregularly spaced and pairwise distinct points
xi ∈ Ω := [0, 1]n where n ∈ {1, 2, 3} denotes the spatial dimension and the amount of points
N ∈ N is large. For each i let zi ∈ R be corresponding data which is supposed to stem from
a multivariate function and which is allocated in a set Z. The problem of scattered data fitting
is the following. Given the cloud of points P := (X,Z) = {(xi, zi), i = 1, . . . , N}, find a
function f : Ω→ R that approximates P in a least squares sense with regularization, that is, f
minimizes the functional

J (f) :=
N∑
i=1

(zi − f(xi))
2 + νF(f). (1)

Here F(f) denotes some quadratic functional of f which will be specified below. The first term
in (1) is denoted as data fidelity term and is responsible for approximating the data. The second
term requires f to be in some smoothness space which is a subspace of L2(Ω)∩C0(Ω), therefore
called regularization term. Finally, the parameter ν ≥ 0 balances these two requirements.

We will construct an expansion of the minimizer f of (1) of the form

f(x) =
∑
λ∈Λ

dλ ψλ(x), x ∈ Ω. (2)

There are numerous possibilities for selecting the expansion functions ψλ: B- or box splines on
uniform or nonuniform grids, trigonometric functions, radial basis functions, different classes
of multiscale basis or wavelets or multiwavelets. We want to choose those which best match
the following ‘wish list’: First, the data set is presumably large and irregularly spaced, may
represent a nonsmooth function and may contain outliers (false data). So we should insist on
ψλ with a possibly small support in order to be able to localize the representation. Second,
we envisage iterative solution methods for the least squares problem arising from (1) in view
of a large N . So the ψλ should give rise to favorable spectral condition numbers of these
systems. Third, we wish to devise a unified method for very different sets of data. Hence,
approaches based, e.g., on triangulations of X as an auxiliary step or based on interpolating P
are not considered, partly also due to the fact that one would have to adapt these ingredients
repeatedly whenever an outlier in the data is identified. Fourth, the approximation scheme
should allow for a data-driven multiscale approximation, allowing very different resolutions in
the data and a final error depending only on the data. In this context, the expansion coefficients
dλ should have some meaning in the sense that large values indicate important contributions
and small coefficients are negligible. Fifth, the functions ψλ should in some sense characterize
the smoothness space enforced by the functional F(f).

In view of this ‘wish list’, we propose to use as building blocks for ψλ tensor products of
certain boundary-adapted spline-prewavelets from [45], shortly called ‘wavelets’ here, see, e.g.,
[11] for a general introduction into wavelet theory. Their properties are listed below in Section 2.
These wavelets are defined on structured grids and the set of all these wavelets constitute a Riesz
basis for L2(Ω). The algorithm proposed below in Section 3 works with a subset constructed
in an adaptive coarse-to-fine fashion. Thus, the index set Λ employed in the representation
(2) actually turns out to be a lacunary set of all possible indices so that the set {ψλ}λ∈Λ is
a particular multiscale basis adapted to the distribution and vertical variety of the data. The
proposed scheme is of minimal complexity in the following sense. As we do not assume that
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the data lies on a uniform grid, we do not want to associate an (often artificially chosen) ‘finest’
grid ΩJ with the data. Therefore, any ‘adaptive’ method that requires in a first step to apply
the Fast Wavelet Transform on such a uniform grid ΩJ followed by some thresholding (as it
was done in [24] for data given on uniform grids) is in this sense not an appropriate strategy:
There the full complexity #ΩJ of this grid would enter into the algorithm independent of the
cardinality or distribution of the data points. A particular feature of our new approach is that
the selection of wavelet bases relevant for the approximation is independent of the particular P
when compared to schemes based on, e.g., data dependent triangulations, see, e.g, [20]. Our
scheme which was developed initially in [6] can be seen as one of the approaches on structured
grids which are by many considered a universally applicable and well–established procedure in
scattered data fitting, see, e.g., [26, 27, 30, 35, 37, 42, 43].

Multiscale data fitting with or without smoothing has been discussed widely in the litera-
ture. To name only a few, in [22] a coarse–to–fine strategy has been presented with hierarchical
splines on structured grids which is suited for parameterized gridded data. In [35] scattered
functional data is approximated by multilevel B–splines. For data fitting problems on unstruc-
tured grids, radial basis methods provide good approximating properties [40], a rich theoretical
characterization [3, 39] and a mesh free approach, which appears quite natural when working
with unorganized data [4]. However, corresponding data reduction strategies like thinning [21]
or adaptive thinning [20] usually require the construction of some auxiliary triangulation in or-
der to achieve a multiscale formulation of the problem. Interpolating multivariate scattered data
in higher dimensions is a somewhat different task where radial basis functions or other mesh-
less methods may be particularly useful, see, e.g., [3, 39, 40, 41, 44, 47]. An up-to-date account
of issues and techniques from nonlinear approximation, multiscale analysis and adaptive algo-
rithms for different applications such as curve fitting or partial differential equations is provided
by [18].

Our algorithm operates in a coarse–to–fine fashion solely governed by the distribution of the
data. It adaptively constructs least–squares approximations to the data. Followed by threshold-
ing irrelevant wavelet coefficients, we achieve a representation of the data which is minimally
sparse. We systematically exploit the concept of adaptivity which is by now a well–established
and powerful methodology to finding sparse representations of large–scale scientific problems.
In principle, our scheme allows also for approximating data from spatial dimensions higher than
n = 3 as long as storage permits.

The remainder of the material is organized as follows. In the next section, we recall the main
ingredients of wavelet bases used here. Section 3 describes the adaptive data fitting algorithm.
We address issues of numerical performance, regularization and robust treatment of outliers in
the data in Sections 4 through 6. We conclude with an example from geophysics where the
goal is to reconstruct a harmonic function which is done by including the Laplacian into the
functional F in (1).

2 WAVELET BASES

The main ingredient of our scattered data fitting algorithm will be an appropriate wavelet basis
for a Hilbert space H ⊆ L2(Ω) living on a bounded domain Ω ⊂ Rn. A single multivariate
wavelet function will be indexed by a parameter λ = (j,k, e) which encodes different informa-
tion such as the resolution level or scale |λ| := j, the spatial location k, and the type e ∈ {0, 1}n
of wavelet for n > 1. This accounts to the fact that in the multivariate case we will be using
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tensor products, see, e.g., [13, 16, 45]. Since the domain Ω is bounded, there is a coarsest res-
olution level denoted by j0. Functions with index e = 0 only occur on the coarsest level; they
are scaling functions and consist of tensor products of B-splines. Functions with index e 6= 0
represent detail information of higher frequencies. The infinite set of all possible indices will
be denoted by II . We call the collection of functions

Ψ := {ψλ : λ ∈ II} ⊂ H (3)

a wavelet basis provided it has the following properties:

Riesz basis property (R): Ψ constitutes a Riesz basis for H: every v ∈ H has a unique expan-
sion in terms of Ψ,

v =
∑
λ∈II

vλ ψλ =: vT Ψ, v := (vλ)λ∈II , (4)

and its expansion coefficients satisfy a norm equivalence of the following form. There exist
finite positive constants cH ≤ CH such that for any v = {vλ : λ ∈ II} one has

cH‖v‖`2(II) ≤ ‖vTΨ‖H ≤ CH‖v‖`2(II).

We will write this relation shortly as

‖v‖`2(II) ∼ ‖vTΨ‖H . (5)

This means that wavelet expansions induce isomorphisms between the function space H and
the sequence space `2(II). For the applications considered here, H will be a Sobolev space
Hα(Ω) of smoothness α ≥ 0. A particular feature of wavelet bases is that such norm equiv-
alences hold, in fact, for a whole range of Sobolev spaces α ∈ (−γ̃, γ) depending on the
smoothness of the bases and the cancellation properties (CP) mentioned below, with an appro-
priate scaling of the expansion coefficients by a diagonal matrix, see, e.g., [13].

Locality (L): The functions ψλ are compactly supported: for each λ ∈ II one has

diam (suppψλ) ∼ 2−|λ|. (6)

Cancellation Property (CP): There exists an integer m̃ such that

〈v, ψλ〉 <∼ 2−|λ|(n/2+m̃) |v|W m̃
∞(suppψλ), (7)

where 〈·, ·〉 denotes the dual form between H and its topological dual H ′ and |v|W m̃
∞(suppψλ)

is the seminorm containing all weak derivatives of v of order m̃ in L∞(suppψλ). Here a <∼ b
means that a can be estimated from above by a constant multiple of b independent of all param-
eters on which a or b may depend.

Property (CP) means that integration against a wavelet acts like taking an m̃th order differ-
ence which annihilates the smooth part of v. Thus, the expansion coefficients are small where
v is smooth.

Together, properties (R), (L) and (CP) allow for the proof of numerous theoretical statements
ranging from optimal spectral condition number estimates of elliptic operators in wavelet bases
[14] to convergence results of adaptive wavelet methods for linear and nonlinear variational
problems [12, 18] and PDE-constrained elliptic control problems [15, 34]. At the same time,
these properties still allow to work with piecewise polynomials which is an essential advantage
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for numerical computations. Among the various constructions of different classes of wavelets,
it has turned out that for data fitting problems tensor products of the piecewise linear boundary–
adapted B–spline pre–wavelets from [45] are a good compromise for meeting the ‘wish list’
from Section 1 since they have the additional property

Semi-Orthogonality (O) with respect to L2(Ω), i.e., for |λ| 6= |µ| one has∫
Ω

ψλ(x)ψµ(x) dx = 0. (8)

The semi–orthogonality between functions from different resolution levels will be very useful
for the fast iterative solution of the linear systems appearing in the scattered data context.

3 BASIC COARSE-TO-FINE ALGORITHM

Our algorithm described in this section was originally developed in [6] and is designed in such
a way that we can handle very large data sets. Our goal is to work with as few wavelets as
possible, taking into account only those basis functions which are necessary to resolve the data
given by P . As only finitely many data are to be approximated, only finitely many indices from
II are essential for the representation of the minimizer f of (1). For a given cloud of points P ,
the determination of an appropriate index set Λ ⊂ II , #Λ < ∞, is therefore the central issue.
On the one hand, Λ should be rich enough to be able to represent all features of P while at
the same time any overfitting artefacts as well as processing redundant data should be avoided.
Our basic adaptive coarse-to-fine algorithm will be described for the case that P is not noisy
and does not contain outliers, and we describe it for the case of the least squares functional (1)
without regularization, i.e., for ν = 0.

Before giving the technical description of our scheme, it may be helpful to list several prop-
erties. The choice of relevant indices in the index set Λ is determined in such a way that it
progressively adapts to the data, without introducing at any point a ‘finest’ artificial full grid.
The finest resolution is only determined by the data. In each step of the scheme, a least squares
approximation is computed by solving the normal equations by conjugate gradient (CG) iter-
ations (this issue is discussed in detail below in Section 4). After this step, an appropriate
thresholding on the wavelet coefficients guarantees that only relevant wavelet coefficients are
kept.

The scheme operates in a coarse-to-fine fashion as follows. On the coarsest level j0, all
indices contained in II are selected; these indices correspond to the generator functions on this
level. Thanks to the scale localization property (L), we progressively construct ‘from coarse to
fine’ a sequence of (nested) index sets Λj ⊂ II , j ≥ j0, in such a way that we only consider
those wavelets whose supports contain enough data points, parameterized by some number q.
From a set of indices Λj we construct a new set Λj+1 by considering only children of previously
chosen wavelets, with the additional requirement that those children must have at least q points
in their support. In this way, we generate a tree as data structure for Λ. Denote by δ(Λj) the
indices of newly allowable candidates and by Sq(δ(Λj)) ⊂ δ(Λj) their subset of indices for
wavelets having at least q points in their support. After an appropriate index set Λ̃j+1 is found,
the minimum of the least squares functional

J (fj+1) :=
N∑
i=1

zi − ∑
λ∈Λ̃j+1

dj+1
λ ψλ(xi)

2

(9)
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is computed by CG iterations on the normal equations. Recall that we want to find a minimally
sparse representation of P . So we afterwards make in each step use of the norm equivalence (5)
by thresholding to discard those wavelet coefficients which are smaller than a certain thresh-
old ε.

ALGORITHM: FIX q AND A THRESHOLD ε AND DO FOR EACH j = j0, . . .

(I) DETERMINE δ(Λj) AND SELECT Sq(δ(Λj)),

(II) IF Sq(δ(Λj)) = ∅ STOP, ELSE SET Λ̃j+1 := Λj ∪ Sq(δ(Λj)),

(III) COMPUTE {dj+1
λ }λ∈Λ̃j+1

BY MINIMIZING J (fj+1) DEFINED IN (9),

(IV) DETERMINE Λε
j+1 := {λ ∈ Λ̃j+1 \ Λj : |dj+1

λ | ≥ ε},

(V) IF Λε
j+1 = ∅ STOP, ELSE SET Λj+1 = Λj ∪ Λε

j+1 AND j = j + 1.

The algorithm terminates at a finest level J with an index set ΛJ which only depends on the
density and the distribution of the data. Note that J is neither user–specified nor previously
chosen. In view of (L), for given finite data X the algorithm always terminates since either
Sq(δ(Λj)) or Λε

j+1 are at some point empty. The algorithm grows exactly one level in each step
so that the highest resolution level contained in the index set ΛJ is J . The final index set ΛJ

has tree structure and the representation is sparse in the sense that it provides a least squares
approximation to the data with a minimal amount of degrees of freedom.

After the index set for possible wavelet candidates Λ = Λ̃j+1 in (2) is fixed, the necessary
conditions for minimizing J in (9) yield the normal equations

Md = b, M := ATA, b := ATz, (10)

where d and z are the column vectors for the coefficients and the given values in Z, respectively.
The observation matrixA ∈ RN×(#Λ) has entriesAi,λ = ψλ(xi) so that the cross product matrix
M = ATA and right hand side b = (bλ)λ∈Λ are given as

Mλ,λ′ =
N∑
i=1

ψλ(xi)ψλ′(xi), bλ =
N∑
i=1

zi ψλ(xi). (11)

Note that M can be interpreted as a discretized Gramian matrix since the Mλ,λ′ have the form
of a discretization of the L2 inner product. It is not immediately clear that M resulting from
the above algorithm is indeed invertible. Sufficient conditions guaranteeing A to have full rank,
which blend into the above scheme and which are based on the Theorem of Schoenberg and
Whitney for B–Splines are provided in [5].

As an example, the performance of ALGORITHM is tested on the 3D data set from [5] dis-
played on the left of Fig. 1. The reconstruction with the full coarsest grid j = 3 provides already
a good reconstruction in smooth areas but fails to do so in the neighborhood of the ring where
high gradients occur. New wavelets on level j = 4 are only chosen in this area and, as can be
seen on the right of Fig. 2, provide a more accurate reconstruction.

An interesting application of the above least squares data fitting approach based on adaptive
wavelets for the approximate evaluation of nonlinearities is studied in [9]. There the data points
P are chosen depending on the type of nonlinearity. This scheme is then used to compute the
solution of Burgers’ equation by means of an adaptive wavelet viscosity method [9].
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Figure 1: Left: Original data set consisting of 413 points displaying the result of a simulation of the two-
body distribution probability of nucleon-nucleon correlations for 160 (Courtesy of VolVis and SFB 382
of the DFG). Middle: Isosurface at y = 0.5. Right: Distribution and size of wavelet coefficients for level
j = 3 and wavelet type e = (1, 1, 1); coefficients range from small (blue/dark) to large (red/light).
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Figure 2: Left: Isosurface of reconstruction at level j = 3. Middle: Distribution and size of wavelet
coefficients for level j = 4 and wavelet type e = (1, 1, 1). Right: Isosurface of reconstruction at level
j = 4 with 2107 new degrees of freedom as opposed to the 35937 possible ones.

So far we have not taken into account any statistical assumption on the distribution of the
given data. It would be very interesting to combine the present approach with techniques from
statistical learning theory where in addition to the regression function f the unknown probability
distribution is to be estimated, see, e.g., [1].

4 NUMERICAL SOLUTION

A crucial step in our adaptive ALGORITHM is the computation of the minimizer of the least
squares functional (9). Such least squares problems are often solved by computing a QR de-
composition of A. In the present context, we prefer to solve the resulting normal equations (10)
for the following reasons.

First, for very large data sets as the one considered in Fig. 1, we usually obtain #Λ � N .
This means that we need much less space for storing M which is of size R(#Λ)×(#Λ) than for
A, where the amount of data N enters as the number of rows. In this sense, forming the normal
equations entails in fact some data compression effect, as a large N only appears as the size of
the sums in the entries of Mλ,µ =

∑N
i=1 ψλ(xi)ψµ(xi) and not in the size of the matrix M .
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Second, for the particular wavelet basis we use, the spectral condition number of M is very
moderate. This may be attributed to the fact that M is a discretization of the Gramian matrix
with entries (ψλ, ψµ)L2(Ω) which has in view of the L2-stability of the wavelet basis (5) a uni-
formly bounded condition number independent of the finest level of resolution. For growing N ,
the entries of M ‘approximate’ the entries of the Gramian even better, meant as a trend. (Of
course, a concrete approximation estimate between the matrix entries would depend on the dis-
tribution of points.) Consequently, iterative methods like a conjugate gradient (CG) scheme on
M are expected to reduce the error in each step by a fixed amount and the number of iterations
to reach a prescribed accuracy are envisaged to be very moderate. This has been confirmed in
all numerical experiments we have conducted. We have also compared in [7] approximation
errors of our results with the normal equations with approximation errors for a least squares
solution computed using QR decomposition of A and found only negligible differences, while
the iterations took much less time for the normal equations. Further details on the efficient
numerical solution of least squares problems can be found in [2].

Third, in view of the tree structure generated by the adaptive algorithm, the matrix M on
level j is a submatrix of M on level j + 1; the latter only contains additional entries with
respect to wavelet functions ψλ for |λ| = j + 1. Thus, one expects a nested iteration algorithm
which takes the solution vector d from level j, padded with zeroes, as initial guess for the CG
iteration on level j + 1 to perform particularly well. In addition, the ‘almost’ orthogonality
between levels in M which is a result of the semi-orthogonality property (O) provides a strong
decoupling between levels, so that a solution on level j is on its low frequencies only marginally
altered by the iteration on level j + 1.

We illustrate these particular features of our wavelet basis by comparing it with another stan-
dard multiscale basis, the hierarchical basis which has proven to be very popular when solving
elliptic PDEs in variational form [48]. In one dimension, it consists of the scaled versions of the
linear B-spline, also called ‘hat function’. This basis is not stable with respect to L2 and, there-
fore, the spectral condition number of the Gramian grows like 2j [5]. Comparisons between the
hierarchical B–Spline basis and a wavelet basis were made in [25] in the context of geometric
modeling. In computer graphics, a hierarchical B–spline approach was studied in [22]. As an
example for the different performance of the wavelet basis used here and the hierarchical basis,
Fig. 3 from [5, 6] is displayed, where these issues have been discussed in detail. Very few CG
iterations suffice for the wavelet basis to reach the saturation error 10−2.
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Figure 3: Error decay for J = 4 (right) for the hierarchical basis and the wavelet basis using nested
iteration for a data set of 104 randomly generated points (middle) generated from the surface on the left.
For the semi-orthogonal wavelet basis, five iterations suffice to reach the saturation error 10−2 while the
hierarchical basis needs about 100 iterations.

One remark should be made concerning the different possible construction of tensor prod-
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ucts from univariate functions. In principle, one can distinguish the isotropic case, where the
supports of all wavelets from one level are cubes of approximately the same length in each di-
rection, from the anisotropic case, see [5] for a precise description of the construction. In the
numerical experiments also reported there, the spectral properties of M using one or the other
construction are for the data fitting problem very similar and do not influence much the behavior
of the CG scheme on the normal equation.

5 MULTILEVEL REGULARIZATION

Now we extend the least squares fitting strategy to include into the objective functional a
Sobolev seminorm with positive smoothness index α as a regularizing term to enforce a smooth
approximation. This classical approach for α ∈ {1, 2} was studied, e.g., in [19] for general
splines, [27] for hierarchical splines, [29] for splines on triangulations, or [25] in a wavelet re-
formulation of the spline problem. Here we choose more generally F(f) := ‖f‖2

Hα(Ω) so that
we consider

J (f) =
N∑
i=1

(zi − f(xi))
2 + ν‖f‖2

Hα(Ω), (12)

where a not necessarily integer α > 0 parameterizes the smoothing and ν > 0 balances the
fidelity of the data and the smoothness. In view of the statements made after (5), the wavelet
formulation allows to represent functions in Sobolev norms in terms of sequence norms of
weighted coefficients from their wavelet expansions. Accordingly, following [10], we replace
‖ · ‖2

Hα(Ω) by the corresponding sequence norm on the right hand side of (12),∥∥∥∥∥∑
j,k,e

dj,k,e ψj,k,e

∥∥∥∥∥
2

Hα(Ω)

∼
∑
j,k,e

22αj|dj,k,e|2. (13)

The minimization of (12) using this sequence norm is now equivalent to the solution of the
normal equations

(M + νR)d = b. (14)

Here R is a diagonal matrix with entries

R = diag (22αj0I, . . . , 22αJI) (15)

if J is the highest level of approximation and the sizes of the identity matrices depend on
the cardinality of Λj . The representation of the smoothing term in wavelet coordinates has
some interesting properties. First, the different dyadic scales are decoupled which means that
the weak decoupling between levels in M is maintained, and the effect of the regularization
term boils down to a penalization of the higher frequencies. Thus, the parameter ν controls
the balance between fidelity and regularization while α controls the relative penalization across
scales. Second, since (5) holds for the whole scale of fractional Sobolev spaces {Hα(Ω)}α∈[0,γ),
one has easy access to the entire scale which reduces to a simple diagonal scaling in the wavelet
framework by means of the diagonal matrix R. Third, the formulation is independent of the
wavelet family. Of course, the smoothness of the wavelets imposes a limit on the maximal
value of α for which (13) holds.

We have now two parameters in (12), the smoothness index α and the weight parameter ν
to balance the data approximation and the smoothness part. This can be used to adjust as best
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as possible to the given data. An example of an application from photogrammetry with fixed
α = 4 and ν = 0.01 is provided in Figs. 4 and 5. It should be mentioned that for the linear
pre-wavelets we employ, the norm equivalence (13) does not hold for this high value of α.
Nevertheless, the reconstruction in Fig. 5 gives the best result for this case.
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Figure 4: Left: Original data, a 3D point set consisting of 330.000 points of an industrial site (taken by
Leica Cyrax 2500, Prof. Staiger, GH Essen). Middle: Vertical view of a section of the original data.
Right: Sampling geometry of this section.
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kx

ky

Figure 5: Approximation of the data from Fig. 4 by wavelet reconstruction with regularization for ν =
0.01, α = 4 and thresholding parameter ε = 10−3. Left: Reconstruction for J = 4. Middle: Wavelet
coefficients of type (1, 1). Right: Reconstruction for J = 6. The final approximation contains #Λ6 =
2623 coefficients as opposed to 16384 coefficients for the full grid.

Standard cross validation techniques start out with computing the weight parameter ν for a
fixed choice of α, which requires to solve an additional system of normal equations. Below
we once more exploit the multilevel framework provided by wavelets and introduce a multi-
level version of the cross validation procedure. This scheme turns out to be both relatively
inexpensive from a computational point of view as well as adjusting well to smoothness and to
localization effects.

Let us first describe the classical situation where the smoothness parameter α is fixed. Dif-
ferent ways to select an appropriate regularization parameter ν in (12) were proposed, where
one of the most popular choices are cross validation methods, see, e.g., [46]. Particularly, in
the Generalized Cross Validation (GCV) method one computes ν as the minimizer of the GCV
potential with respect to the Euclidean norm ‖ · ‖, that is,

GCV (ν) :=
‖I −H(ν)z‖2

(tr(I −H(ν)))2
, (16)

where the influence matrix H(ν) is defined asH(ν) := A(M+νR)−1AT . The influence matrix
is never computed explicitly, since only the application of H(ν) to a vector needs to be carried
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out. This in turn requires the solution of a linear system with matrix M + νR which is of a
similar type as in (14). The trace in the denominator of (16) is usually estimated stochastically
as tr(B) = uTBu where u is a random vector with entries 1 and −1 and B is a quadratic
symmetric matrix. Consequently, the evaluation of GCV (ν) for each ν requires the solution of
two linear systems of the type (14). The total computation time then depends on the number
of GCV evaluations which are needed to find the minimum of GCV (ν). We have displayed in
[7] a series of bivariate examples where we have applied these GCV techniques and where the
solution of each linear system costed less than one second.

The GCV technique yields an optimal ν in the sense that it minimizes the variance under the
assumption that the data has been corrupted by white noise. This theory developed for splines
immediately carries over to the wavelet case [5]. Moreover, as shown in [7] the underlying
heuristics can also be applied successfully to other data fitting approaches which require some
regularization such as for data sets with a highly varying point distribution or for data with holes
in the domain where typically overfitting artifacts occur.

The main issue in [7] is the following multilevel version of the GCV algorithm used within
the context of the adaptive coarse-to-fine ALGORITHM. The idea is to simultaneously use the
GCV with the hierarchical growth of the wavelet tree as the levels become higher. We have
observed above that the wavelet representation penalizes the different dyadic levels separately
with the same weight 22αj . In view of the structure of the diagonal matrix R given in (15), we
prescribe instead a diagonal penalizing matrix with the same values νj ≥ 0 for all entries of
each level j, where the νj are computed independently following a GCV criterion. Now at each
level j the normal equations attain the form

(ATΛjAΛj +Rj)d = ATΛjz, (17)

where the diagonal matrix Rj is defined component–wise as (Rj)λ,λ′ := δλ,λ′νj for some set
of scalars {νj′}j0≤j′≤j . These scalars are computed inductively at each level following a GCV
criterion. At level j0, we define the influence matrix

H(νj0) := AΛj0
(ATΛj0AΛj0

+Rj0)−1ATΛj0 ,

and νj0 is obtained by minimization of the corresponding GCV potential (16). At any subse-
quent level j the influence matrix is defined as

H(νj; νj0 , . . . , νj−1) := AΛj(A
T
Λj
AΛj +Rj)

−1ATΛj (18)

to have νj as only variable since the νj′ from previous levels j0 ≤ j′ < j are already computed.
νj is then determined by minimizing (16). Recall that the influence matrices are never com-
puted explicitly as they only need to be applied to a vector. The new penalizing term can no
more be interpreted as stemming from a smoothing term ‖f‖2

Hα(Ω) since no relation between
the penalizing parameters {νj}j≥j0 is prescribed. Nevertheless, this approach offers some in-
teresting advantages. It is easily built into the coarse–to–fine growth of the tree. One can attain
higher flexibility for the smoothing effect. Moreover, overfitting artifacts are typically localized
in scale which enables us to disentangle the different scales. Last, the method is much cheaper
as the GCV method with both α and ν as free parameters from a computational point of view.

As illustration, we apply the multilevel GCV algorithm to the data set in Fig. 6 obtained from
[38] which corresponds to a bathymetrical study of part of the sea floor of the Dominican Re-
public. As can be seen from the left image, measurements of the sea floor depth are irregularly
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Figure 6: Left: Sampling geometry with N = 10732 points. Middle: Piecewise linear interpolation.
Right: Reconstruction with multilevel GCV.

distributed, forming lines, clusters and holes. The central plot shows a visualization of the depth
of the full set of data points using piecewise linear interpolation. For the classical GCV, there is
no obvious way to predict which α may give a good reconstruction. In contrast, our multilevel
GCV algorithm gives a sufficiently good reconstruction which is displayed in the right plot.

6 TREATMENT OF OUTLIERS

Next we discuss the issue how to treat outliers in the data. At first, the definition of an outlier
has to be clarified. For the ‘human eye’, the presence of an outlier must create a ‘cusp’ in the
approximating function; an outlier is recognized as an artifact which is extremely well localized
in space and frequency. For this reason, the wavelet framework may be the method of choice for
outlier detection. The method introduced in [5, 8] exploits the least squares approach described
above by building outlier detection into it in the following way. The result of the data fitting
procedure is the construction of a function f in the form (2) which represents the data. Thus, it
seems natural to transfer the problem of outlier detection from the raw data point of view to the
approximation f . If f catches the data features, the presence of an outlier must consequently
create a local jump (or oscillation or peak) in f . Otherwise, if f is not affected by the outlier,
the scheme does not have to take the outlier into account. Thus, we face the issues how to define
these local jumps in a rigorous mathematical way which is at the same time easy to implement,
and how can we distinguish jumps created by outliers and jumps contained in the data? The left
plot in Fig. 7 illustrates four areas of different prototypes of outliers and various types of data
which we need to be able to handle. In the leftmost area we see one point (x100, z100) which is
definitely classifiable as an outlier. The second area represents a cusp really represented in the
data, and points in this area should not be marked as outliers as they represent a high frequency
phenomenon in the data and accidental removal of points in this area would eliminate significant
information about this local structure. The data in the third area present a spatially located
feature of high frequency. Here the frequency is lower than in the second area and more data
points are involved in its local representation of the local structure. A removal of some points
from this area would not necessarily eliminate significant information, as the remaining points
would certainly reproduce the local features of the data. The point (x800, z800) in the fourth
area is an outlier embedded into a highly energetic zone. These kind of points pose the hardest
difficulties to outlier detection algorithms. On one hand, the neighborhood can mask the effect
of the outlier. On the other hand, neighboring points carry significant information about the
local structure on the data, and false removal in this area should be avoided by any means.

The wavelet representation of the data allows for a very practical answer to the questions
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raised above. Concerning the identification of jumps, there is a vast amount of literature, see,
e.g., [31]. There the basic idea is that the presence of a jump is reflected by large wavelet co-
efficients of f . However, jumps caused by outliers cannot be distinguished from data–inherent
jumps solely by inspection of the wavelet representation of the data. In fact, one has to analyze
how individual points influence the wavelet representation. In the approach described below,
this task can be easily performed after having constructed the approximation since all the in-
formation needed to perform this analysis has already been processed in the data structures.
Without treating the outliers, our ALGORITHM produces the approximation shown in the mid-
dle plot in Fig. 7. Clearly the outliers produce undesired artifacts in the first and the fourth
area.
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Figure 7: Left: Synthetic data set with N = 1000 data points showing different types of outliers. Middle:
Adaptive reconstruction of the data set with #Λ = 190 wavelets. Right: Resulting wavelet coefficients
of the approximation. The y–axis shows the resolution levels and the x–axis displays the spatial location
of the wavelet coefficients. Larger wavelet coefficients are darker. Highest resolution level in Λ is J = 8.

After having carried out ALGORITHM, we know the coefficients {dλ}λ∈Λ of the constructed
approximation f of the form (2) as the main product of the algorithm and an efficient encoding
of the observation matrix A = AΛ. The main computational effort lies in the construction of
A, which implicitly contains a complete analysis of the data. We will exploit this in the outlier-
finding approach by separating the outlier finding procedure into three steps. First, we locate
in which area an outlier can be present by simple inspection of the coefficients {dλ}λ∈Λ, as
the presence of outliers must cause large wavelet coefficients at high levels, see the right plot in
Fig. 7. We then extract out of the originalN points those contained in the support of all wavelets
ψλ classified in the first step. Third, we test all the points (xi, zi) in the areas identified in the
first two steps, accumulated in the subset S ⊂ P , based on a merit criterion ω(i) which serves
as an ‘outlierness indicator’. Points whose ω(i) is above a predefined threshold τ are discarded
from the data set. Next we need to describe how to construct meaningful and computationally
fast outlierness profiles ω(i).

The first criterion is a global refitting criterion defined as follows. Consider one of the points
(xi, zi) for i ∈ S and test if it is an outlier. The basis of this test is to measure to which extent
its presence alters the shape of the approximation f which can be achieved in three steps. We
first construct an approximation f to the whole data set. Then we construct an approximation
to the whole set of data except the point (xi, zi) to be checked. In order to do so, we use the
same configuration of wavelets which has been used to obtain the approximation to the whole
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data set. Thus, we compute

f [i] := arg min
g=

P
λ∈Λ dλψλ

∑
`6=i

(z` − g(x`))
2 . (19)

Then we compare the behavior of f and f [i] in the ‘neighborhood’ of xi. The last step can
be done in a natural way using the wavelet coefficients. We define the influence set of (xi, zi)
starting from level j in the index set Λ as the subset of those λ which includes indices of all
wavelets whose support contain xi. We denote this neighborhood as

Λ
[i]
j := {λ ∈ Λ, |λ| ≥ j : xi ∈ supp ψλ}, (20)

or shortly Λ[i]. Then we compare the local behavior of f and f [i]. The local energy of a function
f by means of a weighted summation of a subset of its wavelet coefficients is defined as follows:
for a function g =

∑
λ∈Λ dλψλ on Ω and a set Λ′ ⊂ Λ, let

EΛ′

α (g) :=
∑
j

22jα
∑

k,e∈Λ′

|dj,k,e|2. (21)

Apparently this definition relies on the norm equivalence (13), compare [28] for the more gen-
eral case of norm equivalences for Besov seminorms. If (xi, zi) is an outlier, in the neighbor-
hood of xi the local energy of f [i] should be much smaller than the local energy of f . We define
the merit profile of (xi, zi) according to a global criterion as

ωglobal(i) := log

 E
Λ

[i]
j

α (f)

E
Λ

[i]
j

α (f [i])

 . (22)

In our experiments we found that a typical thresholding value τ should be in the order of mag-
nitude of 1. Points (xi, zi) for which ωglobal(i) ≥ τ are then classified as an outlier. Thus, in the
proposed model we expect the presence of an outlier to cause a noticeable increase of the local
energy.
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Figure 8: Global removal criterion applied to (x100, z100). Wavelet coefficients of f (left) and of f [100]

(right).

Revisiting the synthetic data set from Fig. 7, we explore next how this method works for
the different areas represented in the data. If we take the outlier (x100, z100) and compute the
global approximations f and f [100], we obtain the wavelet coefficients displayed in Fig. 8. As
expected, no difference is visible outside the indicated box in the upper left corner of the wavelet
coefficients starting at level 4. The presence of the outlier really does act locally. This is
shown in detail in Fig. 9. In the left plot we see f (dashed line) and f [100] (solid line) in the
neighborhood of (x100, z100), where f shows an oscillation created by the point (x100, z100).
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Figure 9: Global removal criterion applied to (x100, z100). Left: Local view of f (dashed line) and f [100]

(solid line). Middle: Coefficients of wavelets in Λ[100] for f . Right: Coefficients of wavelets in Λ[100] for
f [100].

This is reflected by the coefficients of the wavelets in Λ[100]. After eliminating (x100, z100) from
the data to be fitted, the energy content of Λ[100] is practically empty. The criterion (22) here
yields the value ωglobal(100) = 7.02. The same computation for the regular neighboring point
(x102, z102) gives ωglobal(102) = 0.0078, as its removal does not critically vary the local energy.

Although these results are convincing, the proposed strategy has an obvious drawback since
it requires the computation of f [i] for every suspicious point (xi, zi): we have to construct and
solve a different set of normal equations for every i. Fortunately, the structure of the system
Md = b allows to simplify the computations essentially by subtracting only a matrix of rank
one as described in [8]. Moreover, the outlier detection strategy can be further sped up by
considering local energy criteria which boils down to a local reconstruction of f and f [i], see the
results displayed in Fig. 10. Point (x800, z800) is an outlier in the highly energetic environment
in the fourth area from Fig. 7 while the neighboring point (x802, z802) is not. We dispense with
a precise description of the local energy criteria here and refer to [8].

0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.79 0.792 0.794 0.796 0.798 0.8 0.802 0.804 0.806 0.808 0.81
0.6

0.65

0.7

0.75

0.8

0.85

0.9

global
local
global/removed
local/removed

0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.79 0.792 0.794 0.796 0.798 0.8 0.802 0.804 0.806 0.808 0.81
0.6

0.65

0.7

0.75

0.8

0.85

0.9

global
local
global/removed
local/removed

Figure 10: Left two plots: Global and local reconstructions near (x800, z800). Local view of f and f [800]

(left) and removal of (x800, z800) in global and local approximations. Right two plots: Global and local
reconstructions near (x802, z802). Local view of f and f [802] (left) and removal of (x802, z802) in global
and local approximations.

The above methodology can naturally be extended to deal in addition with noisy data and
also works in higher spatial dimensions and for a large number of outliers, see [8], where also
extensive tables displaying numerical results and percentages of outlier detection rates can be
found.

As a final example, we analyze a geophysical data set taken again from [38]. The set in-
cludes 18634 points ordered in a square grid which is displayed in the left of Fig. 11. We add
1000 randomly distributed outliers to this data, yielding the data on the right. In the left plot
of Fig. 12 we see the performance of our algorithm after a first run which eliminates 75% of
the outliers, while the data eliminated by false detection does not appear to damage the recon-
struction. A second run of the algorithm, that is, another iteration on the cleaned data results in
the reconstruction on the right of the figure. As we start from a situation where the density of
outliers has been reduced, further outliers that were previously conveiled by neighboring ones
are now successfully detected.
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Figure 11: Geophysical data set with N = 18605 data points. Left: Vertical view of original data. Right: Data set
corrupted with 1000 outliers which amount to 5.6% of the data.

Figure 12: Reconstruction of the geophysical data from Fig. 11 after robust cleaning. Left: Results after first run.
Right: Approximation after second run.

7 APPROXIMATE CONTINUATION OF HARMONIC FUNCTIONS

Finally, first preliminary results from [33] on the following continuation problem arising in the
context of the computation of the gravity potential are addressed. Assuming that the data set
stems from a harmonic function, that is, a function f : Ω → R satisfying ∆f = 0 where ∆
denotes the Laplacian, we study how well f can be reconstructed by computing the minimizer
of

J (f) :=
N∑
i=1

(zi − f(xi))
2 + ν‖∆f‖2

L2(Ω). (23)

Here F(f) := ‖∆f‖2
L2(Ω) in (1) is chosen. Usually such harmonic continuations are based on

interpolating the data in terms of harmonic Ansatz functions like the spherical harmonics or
wavelet-type approximations, see, e.g., [23]. These functions, however, are globally supported
so that the corresponding linear equations stemming from the interpolation problem involve
fully populated matrices. Consequently, their numerical solution is prohibitively expensive, in
addition to the huge storage space required for the system matrix.

A first attempt to test the quality of the reconstruction uses tensor products of cubic B-splines
based on a uniform grid of spacing 2−j; the harmonicity is enforced by the regularization term
in (23). This was originally proposed in [36] where also first promising experiments based
on higher order finite elements were conducted. The normal equations derived from (23) are
(M + νG)d = b where the matrix G represents the regularization term. The minimizer of (23)
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will be denoted by fν .
As an example, we consider

f(x, y) =
1

2

(
e−10x sin(10y) + e−10(1−x) sin(10(1− y)) + 1

)
(24)

on Ω = (0, 1)2 from which a set of data P is extracted by sampling f on the boundary with
respect to a sampling density 2−` for ` ∈ {6, 7, 8} displayed in Fig. 13.
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Figure 13: Geometry of points for resolution 2−`, ` = 5, 6, 7.

For tensor products of cubic B-splines on resolution 2−4, the results for the reconstruction
for data resolved at 2−5 are shown in Fig. 14. Naturally the reconstruction error is larger at the
boundaries where the amplitude of f is also larger than in the interior.
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Figure 14: Left: Original function f . Middle: Reconstruction fν for ν = 1.0e-10 and data points. Right:
Reconstruction error f − fν .

Many numerical studies and computations with satellite data from actual satellite missions
are provided in [33], together with extensions on using multiscale bases and adaptivity along
the lines in this article.

ACKNOWLEDGEMENT

This work was supported by the Deutsche Forschungsgemeinschaft, Grant KU 1028/7–1, and
by the SFB–TR32, Universität Bonn.

REFERENCES

[1] A.R. Barron, A. Cohen, W. Dahmen and R. DeVore, Approximation and learning by
greedy algorithms, Ann. Statist. 36(1), 2008, 64–94.

[2] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

17



[3] M. Buhmann, Radial basis functions: the state-of-the-art and new results, Acta Numerica
9 (2000), 1–37.

[4] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C. McCallum, and
T.R. Evans, Reconstruction and representation of 3D objects with radial basis functions,
in: Computer Graphics, Proc. SIGGRAPH 2001 (L. Pocock et al., Eds.), ACM Press, New
York, 2001, 67–76.

[5] D. Castaño, Adaptive Scattered Data Fitting with Tensor Product Spline–Wavelets, PhD
Dissertation, Universität Bonn, 2005.
http://hss.ulb.uni-bonn.de/diss online/math nat fak/2005/
castano-diez daniel

[6] D. Castaño and A. Kunoth, Adaptive fitting of scattered data by spline-wavelets, in:
Curves and Surfaces (A. Cohen et al.), Nashboro Press, Brentwood, 2003, 65–78.

[7] D. Castaño and A. Kunoth, Multilevel regularization of wavelet based fitting of scattered
data – Some experiments, Numer. Algorithms 39 (1-3) (2005), 81–96.

[8] D. Castaño and A. Kunoth, Robust regression of scattered data with adaptive spline–
wavelets, IEEE Trans. Image Proc., IEEE Trans. Image Proc.15 (6), 2006, 1621-1632.

[9] D. Castaño, M.D. Gunzburger and A. Kunoth, An adaptive wavelet viscosity method for
hyperbolic conservation laws, Numer. Meths. for PDEs 24 (6), 2008, 1388-1404.

[10] A. Chambolle, R.A. DeVore, N.-Y. Lee and B.J. and Lucier, Nonlinear wavelet image pro-
cessing: Variational problems, compression, and noise removal through wavelet shrink-
age, IEEE Trans. Image Proc. 7(3) (1998), 319–335.

[11] C.K. Chui, An Introduction to Wavelets, Vol. 1, Academic Press, Boston, 1992.

[12] A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet schemes for nonlinear variational
problems, SIAM J. Numer. Anal. 41 (2003), 1785–1823.

[13] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numerica 6
(1997), 55–228.

[14] W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992), 315–
344.

[15] W. Dahmen and A. Kunoth, Adaptive wavelet methods for linear–quadratic elliptic control
problems: Convergence rates, SIAM J. Contr. Optim. 43 (2005), 1640–1675.

[16] W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline-wavelets on the interval –
Stability and moment conditions, Applied Comp. Harmonic Analysis 6 (1999), 132–196.

[17] R.A. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51–150.

[18] R.A. DeVore and A. Kunoth, Multiscale, Nonlinear and Adaptive Approximation,
Springer, to appear September 2009.

[19] P. Dierckx, Curve and Surface Fitting with Splines, Oxford University Press, Oxford,
1993.

18



[20] N. Dyn, M.S. Floater and A. Iske, Adaptive thinning for bivariate scattered data, J. Com-
put. Appl. Math. 145 (2002), 505–517.

[21] M.S. Floater and A. Iske, Thinning, inserting and swapping scattered data, in: Surface
Fitting and Multiresolution Methods (A. Le Méhauté et al.), Vanderbilt University Press,
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