Multilevel preconditioning. ]
P J |. =0,
Dahmen, Wolfgang; Kunoth, Angela

op. 315 344 )

NIEDERSACHSISCHE STAATS- UND
UNIVERSITATSBIBLIOTHEK GOTTINGEN

lerme and Conditiong

The Gottingen State and University Library provides access to digitized documents strictly for noncommercial
educational, research and private purposes and makes no warranty with regard to their use for other purposes.
Some of our collections are protected by copyright. Publication and/or broadcast in any form (including
electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's
online system to access or download a digitized document you accept there Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be
further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materias, please give
proper attribution of the source.

Contact:

Niedersichsische Staats- und Universitétshibliothek
Digitalisierungszentrum

37070 Goettingen

Germany

Email: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF
for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation
in the document. For availability and pricing, please contact:

Niedersaechisische Staats- und Universitaetsbibliothek Goettingen - Digitalisierungszentrum

37070 Goettingen, Germany, Email: gdz@www.sub.uni-goettingen.de



Numer. Math. 63, 315-344 (1992) Num . he
Mathematik

© Springer-Verlag 1992

Multilevel preconditioning

Wolfgang Dahmen' and Angela Kunoth?*

!Institut fiir Geometrie und Praktische Mathematik, Templergraben 55,
W-5100 Aachen, Federal Republic of Germany

2 Institut fiir Mathematik I, Freie Universitit Berlin, Arnimallee 2-6,
W-1000 Berlin 33, Federal Republic of Germany

Received November 18, 1991

Summary. This paper is concerned with multilevel techniques for preconditioning
linear systems arising from Galerkin methods for elliptic boundary value problems.
A general estimate is derived which is based on the characterization of Besov
spaces in terms of weighted sequence norms related to corresponding multilevel
expansions. The result brings out clearly how the various ingredients of a typical
multilevel setting affect the growth rate of the condition numbers. In particular, our
analysis indicates how to realize even uniformly bounded condition numbers. For
example, the general results are used to show that the Bramble-Pasciak-Xu precon-
ditioner for piecewise linear finite elements gives rise to uniformly bounded condi-
tion numbers even when the refinements of the underlying triangulations are highly
nonuniform. Furthermore, they are applied to a general multivariate setting of
refinable shift-invariant spaces, in particular, covering those induced by various
types of wavelets.

Mathematics Subject Classification (1991): 65F35, 65N30, 41A63, 41A17, 46E35

1. Introduction

The perhaps most favorable principal advantages of finite element Galerkin
methods for elliptic boundary value problems are the ability of coping with
complicated domains and the fact that the existence of certain compactly sup-
ported bases, commonly referred to as nodal bases, gives rise to sparse stiffness
matrices. However, one still has to deal with the fact that the (spectral) condition
numbers of these matrices typically exhibit a polynomial growth rate with respect
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to their size. It is therefore of primary importance to precondition the correspond-
ing linear systems, in particular, to exploit the full potential of conjugate gradient
methods. Among the various approaches to this problem, the hierarchical precon-
ditioner [Y1] as well as the closely related Bramble-Pasciak-Xu-preconditioner
[BPX, Y2] have been attracting considerable attention over the past few years. In
both cases the preconditioning is realized through a specific change of bases, which
works when the finite element space under consideration results from successively
refining some fixed (typically low-dimensional) initial space. The growthrate of the
condition numbers for the corresponding hierarchical and BPX stiffness matrices
was then shown to be only logarithmic in the size of the problem [ Y1, BPX]. These
results are formulated for second order problems in two spatial dimensions, i.e., for
C°-finite element spaces. Of course, the dramatic improvement offered by these
methods initiated various attempts to extend these results to higher order problems
and to higher spatial dimensions. However, already for three variables the hier-
archical preconditioner produces polynomial growth. In general, it is fair to say
that an extension of these results for finite elements with respect to higher dimen-
sional simplicial partitions is a delicate problem. As for higher order problems in
the 2D-case, logarithmic rates could recently be established for hierarchical and
BPX type preconditioners based on C'-conforming finite element spaces [O2,
DOS].

On the other hand, the general setting for hierarchical and BPX bases exhibits
striking analogies to concepts like multiresolution analysis and wavelet expansions
[Mal, M. The related rapidly expanding theory and applications have addressed
mainly issues of harmonic analysis, image and sound processing and data compres-
sion. However, there have been various recent attempts to use wavelets also for the
solution of partial differential equations (see e.g. [ Awa, GLRT]), although mainly
for problems in a single space variable. The particular issue of preconditioning
linear systems arising from second order elliptic problems is also addressed in [J]
but with respect to orthonormal wavelets of non-compact support whose construc-
tion is highly dependent on the domain. The same problem is treated in [CW],
where it is shown that tensor products of compactly supported univariate or-
thonormal wavelets give rise to logarithmically growing condition numbers as
obtained for the hierarchical bases. At any rate, these results do not seem to offer
any essential advantages over the finite element based methods yet.

This motivates the present attempt to develop sufficiently general conditions
for estimating condition numbers which, on one hand, apply in a finite element
context and, on the other hand, allow to work out precisely the potential advant-
ages of wavelet-type expansions, or better, of sequences of nested principal shift-
invariant spaces. The essential task in all the above mentioned investigations is to
relate Sobolev norms to certain discrete norms depending on the spaces to be used
for the Galerkin approximations. We will establish such norm estimates for
a general setup covering, in particular, bivariate C°- and C'-finite elements as well
as sequences of nested shift-invariant spaces corresponding to any number of
spatial dimensions and any order of differential operators. In fact, we will bring out
the precise circumstances under which even uniformly bounded condition numbers
are obtained. In particular, we will see that orthonormality is not crucial in this
regard.

One should mention that some of the basic ingredients of our analysis are quite
familiar facts which, however, come up in somewhat different areas. In particular,
the theory of function spaces (cf. [N, T]) offers powerful tools for the present
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context. Specifically, we draw upon techniques used in [DP1], [DP2] and [ DJP].
Similar techniques have been used in [O1, O2] for bivariate problems. After
completing this paper, we also became aware of related work in [ O3] dealing with
a shift-invariant setting of arbitrary spatial dimension but only for certain C°-finite
elements.

Aside from the fact that sharp estimates are obtained for a general setup,
including conventional finite elements, we would like to stress some particularly
favorable features offered by the use of refinable shift-invariant spaces. Firstly,
there is no need for developing explicit geometrical refinement strategies, which
tend to become more complicated for higher spatial dimensions, since the different
scales are introduced automatically through the translates and dilates of a single
function, an essentially dimension independent concept. Secondly, the wavelet
transform techniques, in particular the structure of so called refinable functions,
offer a unified framework of powerful tools for dealing with basic tasks like
computing inner products or generating the preconditioners. On the other hand,
the elegance and generality of the techniques employed in this setting rests to some
extent on the fact that in this case we have isolated the central issue of establishing
the relevant norm estimates from the equally important problem of handling
boundary conditions. However, we feel that the above mentioned advantages of
a rather flexible and widely applicable concept justify investing separate systematic
investigations of this issue which will be taken up in a forthcoming paper. There-
fore, we will confine our discussion here to simple model cases, such as periodic or
simple homogeneous boundary conditions to which the basic norm estimates
apply without serious additional complications. We hope that clarifying those
aspects of the problem, which relate to norm estimates, helps bringing those issues
into focus which are crucial for further advancements.

The paper is organized as follows. In Sect. 2 we state the basic problem and
collect some preliminaries. In Sect. 3 we formulate general conditions for estima-
ting condition numbers of stiffness matrices for elliptic problems. These criteria are
proved in Sect. 4 using techniques from the theory of function spaces. In particular,
this leads to the characterization of the elements of Besov spaces in terms of
weighted coefficient sequences of corresponding multilevel representations. In
Sect. 5 we apply the general criteria to show that for second order problems and
classical C°-finite element spaces the Bramble-Pasciak-Xu preconditioner gives
rise to uniformly bounded condition numbers even when the corresponding refined
triangulations are highly nonuniform. Our primary objective, however, is to show in
Sect. 6 that the preceding results apply to a rather general setting of refinable,
shift-invariant spaces. The corresponding norm estimates are derived first relative
to all of R*. We comment then on the case of bounded domains and simple types of
boundary conditions. We focus on those cases where even uniformly bounded
condition numbers are obtained. This includes wavelet type expansions, pre-
wavelets and biorthogonal expansions. Again orthogonality of decompositions is
not crucial in this context. Finally we comment briefly on computational issues
related to implementing corresponding methods.

2. Preliminaries

Let us denote for any polynomial P on R*® by P(D) the differential operator
obtained by replacing each variable by the corresponding partial derivative. We
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will be interested in solving boundary value problems of the type
2.1 P(D)u=f on Q, Bu=g ondQ,

where P is a polynomial of degree 2k, Q < R* is some bounded domain with
sufficiently regular boundary 02, and B is to express suitable boundary conditions.
Here and throughout the paper ‘sufficiently regular’ is to imply the following two
things. Firstly, the standard L ,-moduli of smoothness are equivalent to corres-
ponding K-functionals (cf. [DDS, JS]). Secondly, there exist appropriate extension
operators from Besov spaces on €2 to Besov spaces on all of R® (see [ DS, JW1]). So,
in view of the interrelation of the various relevant regularity conditions on open
domains established in [Sh], it is sufficient for our purposes to assume that Q is
minimally smooth in the sense of Stein [ S]. Moreover, to us it is only important to
assume that (2.1) is elliptic in the following sense. Suppose the weak formulation of
(2.1) is to find u € H%() such that

(2.2) a(u,v) =(f,v), ve HYQ),

where (4, v):= [ qu(x)v(x)dx, a( - , -) is the bilinear form induced by (P(D), B), and
H%(Q) is a suitable subspace of H*(Q2) depending on the nature of the boundary
conditions in terms of the operator B. We require that

23) a(+, )~ [+ 1Z2(2).

Here F, ~ F, will always mean that there exist some constants 0 < a, b < oo such
that aF, < F, < bF, holds independent of any parameters the quantities F; may
depend on and || - ||, ,(€2) is the Sobolev norm for the space W*?(Q) (see e.g. [A]).
We will adopt the standard convention of writing H*(Q) = W*2(Q) while other-
wise p may range between 1 and infinity with the usual modification for p = co.

For any given finite dimensional subspace S of H¥(), let A denote the positive
definite selfadjoint operator on S defined by

(2.4) a(u,v) = (Au,v), ve H%(Q).

Defining then b e S by (b,v) = (f,v), ve S, we have to solve the linear operator
equation

(2.5 Au=b
for some u € S. Usually (2.5) is solved by means of an iteration of the form
(2.6) u"tli=(I - wCA)u" + oCh, neNy,:={0,1,2,...},

or by a conjugate gradient acceleration of (2.6). Here w is a suitable relaxation
parameter and C is some selfadjoint positive definite operator approximating A ~*,
and hence plays the role of a preconditioner. More precisely, to accomplish
a favorable convergence of any such iteration scheme, C has to be chosen so as to
keep the spectral condition number x(C /2 AC'/?) as small as possible. To estimate
condition numbers we will make use of the following well-known fact.

Remark 2.1. If for some constants 0 <y, I' < o0

(2.7) Y(C~1g,9) Sa(g,9) SI'(C 'g,9), ge€Ss,
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then
(2.8) K(CY2ACY2y STy .

We conclude this section by addressing the role of specific realizations of the
operators A and C. To this end, suppose @ = {¢,:i € I} is a basis of S so that
A may be represented in terms of the ‘stiffness matrix’ A¢:= (a(@;, ¢;))i jcr- When
& is a typical nodal basis of a classical space S of conforming finite elements in
H%(9), it is well-known that the spectral condition number k(A4 4) of A4 grows at
least like (# I)2*". One way of viewing the task of preconditioning the system of
linear equations

(2.9 Aoy =be, (be)i:=(f0;), i€l,

is to perform an appropriate change of basis. To this end, let ¥ = {y;:ie I} be
another basis of S, and let L denote the matrix that takes the coefficients of some
g€ S relative to ¥ into those relative to @. Thus the stiffness matrix relative to ¥ is
then given by

(2.10) Ay = L"A4L .
Noting that for g = Ziszyl"/’i’ one has a(g,g) = yTAyy, the equivalence (2.3)

immediately implies the following fact which will be used later.

Remark 2.2. If for a given space S as above there exist some constants
0<79,I' < oo and d;,ie€l, such that

(2.11) P2 1y SIY vyl Q) ST Y |diyil?, ye R*,
iel iel iel
then there exists a constant ¢, depending only on the equivalence (2.3), such that
kK(D"'AgD V)< cI/y,
Where D = (di(si,,)i,lel.

Thus, when the quotient I'/y is small relative to (#1)%*/*, say, the matrix
C:= (LD ~*)(LD~")" is a candidate for a preconditioner.

3. A general estimate

From a number of previous results one expects to obtain well-conditioned bases
when the space S belongs to a sequence & of strictly nested spaces S; = Hy(Q),j €
Ny, ie.,

S0CS1CSZC...,

where it is reasonable to require that the closure of their union with respect to the
L,-norm is all of L,(Q). A general multilevel framework may then be described by
associating with & a sequence 2 of linear projectors Q;, j€ Ny, which map any
S, m Z j, onto S;. Defining then

(3-1) Wj+1 = (Qj+1 - Qj)Sj+1
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yields the decomposition
(3-2) Sj+1=Sj®Wj+1~

It will be convenient to write W,:= S, so that

j=0

Clearly the corresponding multilevel representation of any g € S,, is then given by

(33) 9=009+ Y (Q;=Q;-1)g.

To carry out our analysis, we introduce the difference operator

{

(ALf)(x) =} (j)(—l)’“jf(x +Jjh), x,heR’

j=0

and define for 1 < p < oo the /-th order L ,-modulus of smoothness

@/ (f;t, Q)= sup |ALS ] (R¢0)

|hl2 st

where Q/p:={xeQ:x+jheQ,j=0,...,7} and |-|, denotes the Euclidean
norm on IR*. To see how the smoothness of f affects the decay rate of w,(f, t, 2),,
as ¢ tends to zero, let us denote the usual Sobolev seminorms by |f |2 ,(2):=
Z‘a|=(||D“f[| P(Q2) for the whole range 1 < p < oo of p with the usual modifi-
cations for p = oo. Thus, when f belongs to the Sobolev space W*?(Q2), one can
estimate w,(f, t, 2), in terms of ¢/| ], »(€). The latter quantity typically appears
as an error bound for finite element approximations when the approximated
function f is sufficiently smooth. When f is not known to be smooth beforehand,
so called Whitney type estimates often still provide bounds for the approximation
error in terms of the corresponding modulus of smoothness (see Sect. 4).

Our goal is to formulate a possibly unified yet sufficiently flexible framework of
conditions, which yield good estimates for condition numbers for various types of
finite elements as well as for a general multidimensional setting of nested shift-
invariant spaces to be discussed later on. Since one expects, in particular, the norm
and approximation properties of the projectors Q ; to come into play, we introduce,
in view of the above remarks, the following quantity

1959 —gll2(2)

34 Vo ii= SU — s
34 ! gsfm wi+1(9,277, Q)
and define

(3.9) Vi=max{l,v, ;. j=0,...,m}.

We will formulate below in Theorem 3.1 a general estimate of condition numbers in
terms of the quantity v,,. Thus, it remains to bound v,,. On one hand, this could be
done directly for any concrete application. In fact, we will demonstrate this in
Sect. 5 in connection with piecewise linear finite elements on non-uniformly refined
triangulations. There we use the above mentioned local Whitney type estimates to
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bound the numerators of v,, ; by a modulus of smoothness. On the other hand, in
many cases the v,, ; can be estimated by bounding the projectors 0 ; and estimating
the L,-distance of g € S,, from S ;. This will lead to simpler criteria for uniformly
bounded condition numbers given in Theorem 3.2.

To state these results, let 4,, denote the operator defined by (2.4) for S = §,,
and, recalling the multilevel representation (3.3), let C,,! be the selfadjoint positive
definite operator on S,, defined by

(36) (Cn'g.g") =(Q09.Q09') + Z 224(Q = Q5-1)9,(Q; — Qj-1)9") -

ji=1

We are now in a position to formulate the following general estimate.

Theorem 3.1. Suppose & and 2 have the following properties. There exists some real
number y > k such that the Bernstein estimate

(3.7) wi+1(g, 1, 2)2 S c(min{l, 12"})"[g[|2(2), g€ Sm,

holds for some constant c independent of m and g. Then one has for C,, defined
by (3.6)

(3:8) K(Cpl?A,Co%) = 0((vy)?), m— 0.

The Bernstein estimate (3.7) is known to hold for several classical finite element
spaces (see e.g. [O1, O2]). In these cases as well as in the applications discussed in
this paper it is verified by representing g € S,, in terms of a stable basis which
reduces the problem to estimating the modulus of smoothness of the basis func-
tions. One can usually exploit the differentiability properties of the basis functions
to handle this latter task.

The proof of Theorem 3.1 and the following results will be postponed to the
next section, where they will be derived from certain discrete norm estimates which
can be formulated in a more general context. We proceed to state a consequence of
Theorem 3.1 which provides a simple criterion for uniformly bounded condition
numbers.

Theorem 3.2. Suppose that the hypotheses of Theorem 3.1 are satisfied and that 2 is
uniformly bounded on L,(Q). Moreover, assume that there exists an integer { > k
such that & satisfies the Jackson estimate

(3.9) inf [|f=gl2(2) £c27™|f1,2(R), feH(Q),

ge€Sm

for some constant ¢ independent of m and f. Then

K(CL2A,,CL%) =0(1), m— oo .

Typical examples to which Theorem 3.2 immediately applies are C°-piecewise
linear finite elements on uniformly refined triangulations in the context of second
order bivariate elliptic problems (cf. [BPX, Y1]), or the C!-conforming finite
elements for fourth order problems constructed in [O2] and [DOS]. In all these
cases the Bernstein and Jackson estimates (3.7) and (3.9) are easily verified. Thus
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the corresponding versions of the Bramble-Pasciak-Xu (BPX) preconditioner,
where Q; is the orthogonal projector onto S;, are readily seen to yield uniformly
bounded condition numbers (see also [O3]). However, when dealing with nonuni-
form refinements of triangulations in the sense of [BSW ], the Jackson estimate
(3.9) cannot be expected to hold in this form so that Theorem 3.2 is not applicable.
We will address this issue in Sect. 5 and show that Theorem 3.1 still applies without
much additional effort.

The actual numerical realization of the BPX preconditioner in a finite element
setting is not based on an explicit change of basis (see e.g. [ Y2]). However, in
Sect. 6 we shall encounter a wide class of cases where the construction of the
preconditioners is conveniently based on a change of basis so that Remark 2.2
applies. We will therefore conclude this section by briefly reinterpreting the above
results in terms of the corresponding stiffness matrices.

To this end, suppose that each W; possesses a stable basis ¥;:= {y; ;:i€ l;},
i.e., there exist constants c¢;, j € N, such that

2

(3.10) Z Vi (Q)“sz |yil2a )’GIR#I’ .
iel; 2 iel
Moreover, let D denote the diagonal matrix defined by D; ;) (j.iry = ¢;248; j0i.ir,

5Ji'=0,...,m, ii’el; and let M,, denote the stiffness matrix relative to the
multilevel basis | Jo<j<m ¥;.

Corollary 3.1. Ifin addition to the hypotheses in Theorem 3.1, respectively Theorem
3.2, condition (3.10) holds, then one has

kK(D7T'M,D™") = 0((vn)?), m—> o ,

and
k(D"*M,,D"Y)=0(1), m—->w ,

respectively.

Finally, note that all the results stated here remain true when the scaling
factor two is replaced by any other factor p > 1, say. Since in all the subsequent
examples we will always consider the case p = 2, we dispense here with this formal
generalization.

4. Discrete norm estimates

The proofs of Theorem 3.1 and Theorem 3.2 are based on techniques from the
theory of function spaces (cf. e.g. [DJP, DP1, N, O1, T]). Similar arguments are
used in [O2] in a more specific bivariate finite element setting. Although the above
problem formulation requires only L,-estimates, it takes hardly more effort to
work in the general scale of L ,-spaces for 1 < p < oo (with the usual modifications
for p = o). In fact, one could consider quasi-norms including values p less than
one (cf. e.g. [DP1]) which we will, however, dispense with here. We will adopt the
standard notation for L - and Sobolev-norms and use ||4],, := (Zjel |2;1P)!P to
denote the corresponding sequence or vector norms. Since the domain Q will be
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fixed throughout, we will drop any reference to @ in our notation for the norms. In
fact, the following reasoning works for Q@ = IR* and remains valid for any domain
Q satisfying the assumptions stated in Sect. 2.

Setting Q _; := 0, the decomposition (3.3) suggests introducing the norms

(4'1) “g” (r,m,p,q) = “ {2””(QJ - Qj—l)g”p}y;O”/q

on S,,, where we will always assume r > 0and 1 < p,q £ 0. In view of (2.11), our
objective is to relate these norms to the Sobolev norms | « ||, ;. In this context it is,
however, useful to consider first the Besov spaces B, , consisting of all functions in
L, such that

I f By =Sl + | flBy, <0,
| flBy..:= {270, 277)p}jem, I, »
and / is any (fixed) integer larger than r (see e.g. [DP1]). Moreover, let
En(f)p= inf [ f—gl,

g€ Sm

where

denote the error of best L ,-approximation from §,,. To formulate the following
result, let the numbers v{?); and v{? be defined as in (3.4) and (3.5) but relative
to L.

Theorem 4.1. Suppose that for some real number y > k,
(4.2) 0i+1(g5t) p < c(min{l, 2" 1) |lgll,, g€ S,

where c is independent of g and m. Then for each 0 < r < min {y, k + 1}, there exist
constants 0 < ¢y, ¢, < oo independent of g€ S,,, me N, such that

C
(43) v(_;) Hg ”(r,m.p,q) g ”g“B;,q é () “g“ (r,m,p,q)» ge Sm .

Proof. Note that for ge S,

4.4 191l rmpay = cUlglp+ 1{271Q59 — gl p} =0l ,) -
By definition of v{?’, we have forj =0, ...,m,
4.5) 10;9 —gll, S vPwx11(9,277)p GESm,

so that we conclude from (4.4)

(46) (v(rrf))_l ”g“(r.m.p,q) _S_ C”g”B;,q’ g € Sm ’

where ¢ is independent of g and m. On the other hand, suppose

4.7) g= Z dj» 9j€S;,jeNg,
=0

J

so that (4.2) yields

wr+1(g,27 "), S c Z 0r+1(95527"),p

J

=0
§c<z 207"™igil,+ X llgjll,,>-
j=0

j=n+1
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Hence
lglBy,, < C(

q ”{ J= “ H } q>
/ i=n+1 IIEIN() /
<—_C|I{2 “gn”p}neN(,”(q’

where we have used a discrete Hardy-type inequality in the last step which
is valid whenever r <y (see eg (5.2) in [DP1]). Specifically, choosing
gn:=(Qn — Qu-1)g €S, provides

(4.8) lgliss.. =cllgllempa> 9ESm,

IA

{2""_“ Z 2y “gj”p}
nelN,

j=0

where c is independent of g and m. Combining (4.6) and (4.8) proves the assertion
of Theorem 4.1. O

We are now ready to prove some of the claims stated in Sect. 3.

Proof of Theorem 3.1. Fixing p = q = 2,r = k we note that, by (4.1),

4.9) (C,Zlg,g) = z 22jk||(Qj - Qj—l)g”% = ”g”(zk.m,Z.Z) s
j=0

where the operator C,, is defined by (3.6). Thus, Theorem 4.1 assures that

v—l(C 9.9 < llgllps, Sc2(Cn'g.9)'%, geS,.
The assertion of Theorem 3.1 follows now from from Remark 2.1, and the fact that
(4.10) W2 =B 2, l*lez~I"155.

(see e.g. [T]). O

Proof of Corollary 3.1. Expanding (Q; — Q;—1)g in terms of the basis ¥; of
Wi, ie.,

(Q; — Qj—l)g = Z /lj,i(g)'//j.i >

iel;
the stability condition (3.10) yields
Z 22M1(Q; — Qj-1glli~ Y 22%ci 3 14;4(9)1%, meN,.
j=0 j=0 iel,

Using again (4.9), this latter relation may be rewritten as

g1 fum,2.2) ~(DAg), DA9)) ,

where A(g) = (4;:(g):iel;,j=0,...,m)and D is the diagonal matrix appearing
in Corollary 3.1. Hence, applying again Theorem 4.1 withp = q = 2,r = k < y,and
taking (4.10) into account, we obtain

T(Di(g), Di(g)) < llglii 2 < c2(DA(g), DA(g)) ,
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where the constants ¢, c, are independent of me N,. The first assertion in
Corollary 3.1 follows now from Remark 2.2. The second part of Corollary 3.1
is an immediate consequence of the first part combined with the following
observation. O

Proposition 4.1. If 2 is a uniformly bounded sequence of projectors on L, and if for
some integer £ >k,

(4']1) Em(f)p§62-'n/lf|/.p7 fE W/,P’
holds with some constant ¢ independent of f and m, one has
4.12) vi? =0(1), m—- o.

Proof. Following standard lines, we first note that for v € W’-? we have, in view of
(4.11),

(4.13) En(f)p= I f=vlp+ En(v),
Se(llf=vl, +27™ol,) -
Thus defining the K-functional
Af1,Q), = K/ (fit)pi=inf {[f=vll, +1[v],,}

ve W/sp

and recalling from [DDS, JS] that, under our assumptions on £,

4.14) K,.(f,it)y~w,(f,t),, t—-0,
we readily conclude that for fe L,
4.15) Ef)pScw(f,i27™), meNg.

Now the classical Lebesgue estimate yields

12i9 —9gll, = (1 +1Q;l,)Ei(9),

which, in view of the definition of v, (4.15), and the fact that

0/(+,t)p, S cwy+1(+,t), holds for some constant ¢ depending on ¢ > k, proves
our clalm O

Proof of Theorem 3.2. The assertion of Theorem 3.2 is now an immediate conse-
quence of Theorem 3.1 and Proposition 4.1 specialized to p = 2. O

As an aside, Theorem 4.1 provides the following characterization of Besov
spaces.

Corollary 4.1. Suppose that for & and 2 one has in addition to the assumption (4.2)
that v{? = O(1), m — . Then
” ¢ ”(r,oo.p.q)~ “ * “B:’,q fOT O<r< Y.

Moreover, if (3.10) holds for some p in the range 1 < p < oo with ¢; = O(1), as
jo oo, then f=37 0% Ajf)W;i€By, if and only if the sequence
2704502, jen, belongs 1o g
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5. The BPX scheme and nonuniform refinements

In this section we wish to apply the above general results to the classical case of
second order elliptic problems in the plane although what will be said remains valid
for three spatial variables as well. To be more specific we adhere precisely to the
situation considered in [Y2], ie., Q is a bounded polygonal domain in RR2,
Dirichlet conditions are prescribed on some part I' of its boundary 0, and the
differential operator P(D) in (2.1) has the form P(D) = — DTAD where A = A(x)
is a 2 x 2 positive definite matrix throughout Q. In this case & can be taken as
a sequence of C°® piecewise linear finite element spaces relative to a sequence
T = {Tj}jen, of nested triangulations of Q. By this we mean that T;., is
obtained by subdividing the triangles in 7; in an appropriate fashion. Here
a triangulation T of Q is a collection of triangles with pairwise disjoint interiors
such that

(T1) =,

teT

(T2) The intersection of any two triangles 7, 7' € T is either empty or a common
vertex or a common edge.

It is important in this context that the angles of the resulting triangles remain
bounded away from zero. This can be, for instance, achieved by subdividing each
triangle in T; into four congruent subtriangles, taking midpoints of edges as new
vertices. This gives rise to uniform refinements of 7y, ie. diam t~2 7/ for te T.
Recall that the BPX preconditioner [ BPX] corresponds to choosing Q; as ortho-
gonal projection (relative to a possibly weighted inner product, see e.g. [ Y2, B])
onto S ;. As pointed out in Sect. 3, in the case of uniform refinements, this is known
to yield uniformly bounded condition numbers [ O3].

However, realistic problems typically require locally refined grids, i.e., highly
non-uniform triangulations, and the question arises whether the favorable behav-
ior for uniform refinements persists. In [ Y27, the bound O(j?) is established for the
corresponding BPX scheme. Recently the better bound O(j) has been proved in
[B] for the same class of nonuniform refinements. In this section we will show that
the condition numbers even remain uniformly bounded as in the case of uniform
refinements.

We briefly recall the main rules for forming possibly nonuniform successive
refinements of triangulations. More detailed discussions of these rules and their
consequences can be found, for instance, in [B, BSW, DLY, L] and [Y2].
A triangle in T} is either a triangle in T}, {, or it is decomposed into four congruent
subtriangles or into two subtriangles by connecting the midpoint of an edge with
the opposite vertex. The first refinement is called regular, the second irregular.
Accordingly, the triangles resulting from these refinements are called regular and
irregular, respectively. Moreover, all triangles in the initial triangulation T, are
regular.

Regular refinements usually result from some adaptive criterion. If a
triangle 7 is subjected to a regular refinement, according to such a criterion,
while its neighbor t’, say, sharing an edge with 7, is not, the resulting partition
would violate condition (T2) above. This is then remedied by an irregular
refinement of t'.
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To ensure that interior angles remain bounded away from zero, one requires the
following additional conditions (see e.g. [B, Y2]).

(R1) Irregular triangles are not refined further.

(R2) Only triangles t € T; with L(t) = j are refined for the construction of T,
where

L(t) = min{i:te T;}
denotes the level of 7.

These constraints still admit highly nonuniform meshes. Nevertheless, the variation
of diameters of nearby triangles turns out to be sufficiently gradual in the following
sense.

Lemma 5.1. Let the sequence of triangulations I be obtained by the above rules.
Then there exists a finite positive constant c, depending only on T,, such that

5.1) diamt

- <c¢ foralt,teT,, Tnt'* .
diamt’ = f » <

Proof. Since this fact is important for our subsequent analysis we sketch a proof.
It follows immediately from (R1), (R2) that every triangle occurring in any T is
geometrically similar to some triangle in 7, or to a triangle arising from an
irregular refinement of some triangle in 7,, and hence to some element of a fixed
finite collection of triangles. This has the following consequences: firstly,

(5.2) diamt~2 "L

secondly, there exists an integer M, depending only on T, such that for any vertex
v in any member 7; of

(5.3) #{teT;:vet} <M,

i.e., the number of triangles in any of the triangulations 7} sharing a common vertex
is bounded independently of j e N .

Now it follows from (5.2) that it suffices to prove the existence of an integer K,
depending only on Ty, such that for all je N,

(5.4 |L(t) = L(t")| <K forallt,v'eT;, tnt'+J .

To this end, suppose 7, v’ are any two triangles in T sharing a common edge #. We
claim that

(5.5) IL(z) = L(z')| = 1.

If L(t) = L(z’) there is nothing to show. So assume that L(t’') > L(t). Hence,
denoting by t” the ‘parent’ of ¢/, (R2) assures that t and t” both belong to some
triangulation T} where j’ < j. By (T2) # must still be the common edge of 7 and .
Therefore the refinement that generated ' must have been irregular, ie., t' is an
irregular triangle. By definition, one has L(t”) = L(z’) — 1. But now we must have
L(z") = L(z), because if we still had L(z”) > L(z) the above reasoning would
imply that also t” is irregular, contradicting (R2). This proves (5.5). Taking (5.3)
into account, we immediately conclude now that (5.4) holds with K = M. This
completes the proof of Lemma 5.1. [
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Note that the corresponding spaces S; are not just subspaces of those that
would be obtained for uniform refinements. Consequently, the results for the
uniform case do not apply directly.

To keep the estimates independent of the quasi-uniformity of the initial tri-
angulation Ty, appropriate weighted L ,-norms are introduced in [ Y2]. Since this
is not essential for the question of boundedness, we dispense with this here to keep
the exposition as simple as possible.

Let X ; denote the set of vertices in T except those belonging to I'. Hence S is
spanned by the piecewise linear ‘hat’ functions defined by

(5‘6) (Pj,v(w) = 2Lj'"5|)w’ v, We Xj s
where L ,:= min{L(1): t € T}, ve t}. One easily confirms that

j <Pj.u(x)2dx = 22L’“"V012(SUPP ©j)/6
o

so that, in view of (5.1)

(.7 lojoll2(@)~1, veX;, jeN,.

Moreover, for g = Zvexjc,,(pj,vesj and any teT;, one has

(5:3) lgli3(r) <c 2 leol* o0l 3(R)
veX;,

where the constant ¢ depends only on the cardinality of the set X;,.:=
{ve X ;: vet} which, in turn, is uniformly bounded in t€ 7} and j € N,,. Converse-
ly, taking the normalization (5.6) into account, and using a standard inverse
estimate combined with (5.2) yields

(59) leol? =27 e g(v)? £ 27 22 7 2heig] 3 ()
where L(t) = L; ,. Thus, upon summing over t € T; in(5.8) and (5.9), we obtain by

(5.7)

(5.10) () ~I{co}vex;le, -

2

Z Cu(pj,v
It is now straightforward to conclude from (5.10) (see e.g. [O1]) that
(5.11) w2(g, t, Q) < c(min {1, 127})*2| g 5(2)

holds for all ge S; where c is independent of j.

Note that, due to the fact that 7; may involve triangles of highly varying size, we
cannot expect that a Jackson estimate of type (3.9) holds. Thus, in order to apply
Theorem 3.1 or Theorem 4.1 we have to estimate the quantities v,, directly. This
estimate will be based on certain auxiliary projectors which we introduce next. To
this end, note that for any triangle 7 in T'; with vertices u, v, w, say, the restrictions
of ., v'€{u v,w}, to 7 are clearly linearly independent over 7. Hence, there
exists a unique collection of linear polynomials {}, {}, {3, such that

(5.12) § 050 (X) 5 (x)dx = 6y, v, 0" € {u, 0, W} .




Multilevel preconditioning 329

Define for every ve X ;, and 7 € T; such that vet

—{i(x), XET
(5.13) n;0(x) = No

0, X ¢ supp ;.

H

where N, is the number of triangles in T; contained in the support of ¢ ,. Clearly,
(5.12) and (5.13) imply that

(514) (nj,w7 (Pj.v) = j r’j.w(x)(pj,v(x)dx = 6uw’ v,We Xj ’
Q
so that
(5.15) (Q;N(x) =Y (f15.0)0).0(x)
veX,

defines, in contrast to the quasi-interpolants employed in [ B, Y21, a projector onto
§;. Consequently, it not only reproduces locally constant functions but all elements
of [] . (R 2), the set of polynomials of degree at most one on IR . Moreover, since
all triangles occurring in the triangulations 7; are similar to triangles in T, or to
triangles resulting from irregular refinements of 7;, one easily deduces from (5.7)
and (5.12) that

(5.16) M0ll2(@)~1, veX; jeN,.

Thus, setting Q; . = | J{t'e Tj: 7' nt + &}, we conclude from (5.7) and (5.16)
that

(5.17) 10 f 1) =] X (fin)0)@50

veX,,

2(T) = el f112(L5.0)

where ¢ depends only on the initial triangulation Tj.
Let

(5.18) T¥:={reT;: L(1) <j, Q;.nt' = & for all 'e T; with L(1’) =j},

and let g be any element in S,,. By the refinement rules (R1), (R2), all triangles in
T¥,j < m, belong also to T,,. Moreover, due to the localness of the supports of the
dual basis functions #;,,, and since Q; is a projector, we have

(5.19) 10,9 —glla(1) =0, teT}.
For te T;)\T¥, we obtain, in view of (5.17), for every Pe[],
(520) 10,9 —gll2(x) £ 10(g — P)2(1) + g — Pll2(v) Scllg — Pl2(;.0) -

At this point we employ the following Whitney-type estimate for best local
polynomial approximation which we state in its general form for L,-norms and for
polynomials on IR®. To this end, we need the modified modulus of continuity

1/p
wz(f,t,Q)p:=<t“[ j]sllAifllg(Q/,h)dh> .
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Now let o be any simplex in R® and let t = diam ¢. The reasoning in [SO] (see also
Lemma 3.1 in [DP1] or [O1]) can be used to show that

(5.21) inf (| f— Pl (o) £ cw/ft,0),

Pe[], (R
where the constant ¢ depends only on the smallest angle in ¢ but not on fand ¢.
One readily infers from (5.1) that

(5.22) diam(Q;,)~2"7 for te T\T¥.

Since P € [ [,(R?) was arbitrary, (5.21) assures, in view of (5.20), that

~

(5.23) 1059 — gll2(t) S cwa(g,277,2;0),

where ¢ depends only on the shape of the triangles in the initial triangulation.
Taking (5.19) into account and summing over € T;\ T} yields

(5.24) 10,9 — gll2(R) £ cwi(g,277,Q), .

Again the arguments in [ PP] carry over to the multivariate case to confirm that
there exist constants 0 < ¢, ¢, <00, depending only on /, p and s, such that

(5.25) 1w (1, Q) S0 (6, Q) = 2w/ (/1,Q),,

which yields
(5.26) 1059 — gll2(R) S cwy(g,279,Q), .

Since one trivially has

1Qj9 —gl2(2) =1Q;9 —9gl2(2),
we conclude from (5.26) that
(5.27) Ve =0(1), m-o0.

In view of (5.11) and (5.27), Theorem 3.1 or Theorem 4.1 therefore yields the
following result.

Theorem 5.1. Let J satisfy the conditions (R1) and (R2) above. The corresponding
BPX preconditioner gives rise to uniformly bounded condition numbers.

For the actual numerical realization of the BPX scheme, the reader is referred to
the detailed discussion in [Y2]. .

Incidentally, we have shown that, on account of (5.26) the projectors Q ; them-
selves induce efficient preconditioners.

In principle, one can follow similar lines to show that the BPX scheme still gives
rise to uniformly bounded condition numbers in connection with nonuniform
refinements of certain C! conforming finite element spaces for fourth order prob-
lems discussed in [DOS]. However, since this requires a bit more technical
elaboration, it will be reported on elsewhere. -

Finally, note that the construction of the projectors Q; works equally well for
tetrahedralizations in the three dimensional case. Since the above Whitney-type
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estimates remain valid for any number of spatial variables and since analogous
local refinements for tetrahedral partitions are available as well [ Bd], the corres-
ponding assertion of Theorem 5.1 still holds in the three dimensional case.

6. Refinable shift-invariant spaces

A central objective of this paper is to apply the above criteria to a possibly general
multidimensional setting of refinable shift-invariant spaces generated by the dilates
and integer translates of a single function ¢ on IR®. Such a setting allows the
realization of (local) refinements and multilevel ‘zooming-in’ techniques without
worrying about explicit geometric refinement strategies for given domain par-
titions which are usually highly dimension dependent. Such a setting is often
referred to as multiresolution analysis and serves as a convenient framework for the
construction of wavelet decompositions (cf. [ Mal, M ]). Its intrinsic shift-invariant
features allow the employment of powerful analytic tools but also suggest the
whole IR* as the most convenient domain to work on. For most of this section, we
will do so too, and formulate first the relevant norm estimates for 2 = R* in which
case we continue dropping any explicit reference to the domain in our notation.
The corresponding estimates for bounded domains satisfying the assumptions in
Sect. 2 follow by standard extension techniques (see e.g. [JW]).

It should be mentioned that we will be dealing here with a setting similar to that
discussed in [DJP] from a different point of view and for different purposes.
Nevertheless, to fit several of the results in [ DJP] into the present context, we will
have to confirm that they still hold under somewhat less restrictive assumptions.

6.1 Refinable functions

The main ingredient of what follows will be a fixed function ¢ on IR* which will
always be assumed to be at least continuous and to have compact support. In
addition, ¢ will be required to be a-refinable. By this we mean that there exists
a finitely supported mask a = {a,:a € Z*} such that

(6.1) p(x) =Y a,p(2x—a), xeR".

ael®
Although a will always be assumed to have finite support, some of the subsequent
developments would remain valid for certain functions ¢ of unbounded support
and masks a e 7,(Z°), see [JM]. Moreover, ¢ is called stable if

(6.2) Y Aao(c—a)

aeZ®

~N Ay, Ael(Z°).

p

We omit the reference to the particular norm ¢, when talking about stability
because stability for some p in the range 1 < p < oo is known to imply, under the
above assumptions, stability for all 1 < p < o0 [IM].

Defining

(6.3) Vj:={ Y A@(2) —a): ie/p(ls)},

aeZ’®
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it is shown in [JM] that for ¢ satisfying (6.1) and (6.2)

(6.4) UVi=L,(R*), 1Sp=o
JeZ

and

(6.5) NV,={0}, 1<p<w.
JEZ

6.2 Jackson and Bernstein Inequalities

Our first step is to establish estimates of the form (3.7) and (3.9) for the present
setting.

Proposition 6.1. Suppose pe W*' has compact support and is a-refinable. Then,
for 1 < p < o0, there exists a constant ¢ such that

(6.6) inf [[f—gll,<c27™ V| fl4iy,

geVm

holds for all fe Wk*1.»,

Proof. Recall from [CDM] Theorem 8.4 that, whenever ¢ € W ¢ # 0 satisfies
(6.1), one has
(6.7) #(0)*0, (D’@)(2na) =0, |l =k aeZ’ a%0,

where

Ju) = | f(x)e ™™ ~dx
R

denotes the Fourier transform of f. Thus, we may assume ¢ to be normalized so
that ¢(0) = 1 which means

(6.8) Y o(x—a)=1, xeR*.

aeZ®
Thus we may expand
o)=Y cpu?
Bz0
in a neighborhood of the origin. Defining for sufficiently smooth functions f

(Lf)(x):= Y, (=)Pleg(DPf)(x),

18l <k
it is shown in [DM2] that, whenever (6.7) holds, the operator
(6.9) (T f)(x):= ZZ (LA27"(+ + 2))e(2"x — a)
aeZ?®

reproduces all polynomials of degree at most k on any bounded domain in R*, and
satisfies for any fe W**1.»

(6.10) If= TS llp 27D fliir,
whence the assertion follows. O
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The key for establishing a sufficiently sharp converse estimate is the following
observation.

Lemma 6.1. Suppose ¢ € C¥ is a-refinable. Then there exists a constant ¢ and some
é > 0, depending only on a, such that

(6.11) I(DP@)(x) — (DP@)(y)| Sclx —yl3, x,yeR’,

holds for all |B| = k.

Proof. We have to recall a few notions from [CDM]. Let E = {0, 1}* denote the
set of extreme points of the unit cube [0, 1]°. Suppose # = {B,: e € E} is a collec-
tion of N x N matrices, and let ¢: [0, 1]° — IR" be a continuous function. (4, &) is
called a refinement pair if

X+e

(6.12) Beé(x)=§< 5 ), ecE, xe[0,1]°.

Moreover, let W:= span{&(x) — &(y):x,y€[0, 1]°}. Due to the equivalence of
norms on finite dimensional spaces, it suffices to establish (6.11) for the sup-norm
|| » on R¥ By Lemma 7.3 in [CDM], there exists some mq € N such that for
mzmo,

(6.13) [Bet ... Bemwl|y < 3wy

forallwe Wand anye!,. .., e™e E. Now pick any x, ye[0, 1]* and choose n € N
such that

(6.14) 272 < x =yl <277

For

x= Y 27V, y= Y 279d), e, d’eE, jeN
ji=1 ji=1
set

=) 27e), yi= > 279d.
ji=1 j=1

Denoting the ith component of X by X; and assuming without loss of generality that
X; = y;, one concludes from (6.14) that there exists some [e N, [ < n such that
(e);=(d"),j=0,...,L (e'*Y);, =1, (e));=0,j=1+2,...,n (d'"""); =0
and (d¥); =1, j=1+2,...,n Hence

(6.15) F—jlas27".

By Lemma 7.6 in [CDM ], there exists z = Z;=1 g2 9, gieE,j=1,...,n,such
that

(6.16) 2% —z), 2™y —z)e[0,1]°.
Thus
(6.17) 1€(x) = EW) o S 1E(x) = E(X)] w0 + 18(X) — <(2)|

+1¢(2) = &) w + 1E() — V)] o -
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A repeated application of (6.12) yields therefore
(6.18) [8(x) = &(X)lw = |Ber ... Ben(&(X) — C0))] .
[€(¥) = E(P)lw =|Bar . .. Ban(&(9) — £(0))] o »

where x = 2"(x — X), y = 2"(y — y)€[0, 1]°.
Moreover, by (6.16) we obtain (see the proof of Lemma 7.6 in [CDM])

E(%) =By ... Bpé(2"(% —2)),
¢(F) =By ... Bpl(2"(§ — 2)),

and therefore

(6.19) 1E(%) = &(2)w = [Bgr - .. Bn(&(2"(X —2)) — &(0))] s »
1€(§) — &(2)l = [Bgr - .. Bgn(E(27(§ — 2)) — E(0))] s -

Hence (6.17), (6.18) and (6.19) provide, in view of (6.13),

1\ Lr/mol
1€(x) = ¢(W)lw =8 sup |é(u)lw<§>

uel0,1]°

< c27nmo
Setting 0 = 1/m,, we therefore obtain by (6.14)

(6.20) 18(x) = &)l Sclx — yI%, x,ye[0,17°.

It is shown in Proposition 7.3 and Lemma 7.2 in [CDM ] that the collection of
matrices

Be = 2|”|(a2+2v—tf)v,ﬁesuppa’ eckE,

together with &(x) = ((D"¢@)(x + a): « esupp a) forms for every |n| < k a refine-

ment pair whenever ¢ € C§ is a-refinable. Hence we obtain

(621) [(D"@)(x) = (D"@)(y)| S clx = yl%, x,yea+[0,1]°, «eZ®.

To finish the proof, note that it suffices to establish (6.1) for x, ye R®, |x — y|,, < 1.
Whenever any two such points are located in different cubes o + [0, 1]°,
B + [0, 1]°, respectively, the line segment connecting x and y intersects the faces of
the partition of R® into cubes « + [0, 1]° M times in points z',i = 1,. .., M, say,
where M < M, and M, depends only on the spatial dimension s. Thus, setting
2% = x,zM*1:=y, (6.21) yields

M+1

I(D"@)(x) = (D"@)(y) = Z |(D"p)(z") — (D"@)(z' 1)

M+1 . .
<Y ezt =z Zelx —yld .
i=1

This completes the proof of Lemma 6.1. O
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As a consequence, we obtain

Proposition 6.2. Suppose ¢ € C¥ is a-refinable and stable (cf. (6.1), (6.2)). Then there
exists some 6 > 0 such that

(622) wk+1(g’ t)p é c(min{l, t2m})k+5”g” p’ ge Vm s

holds for some constant c independent of m.

Proof. Fix any cube I, 5:=2"™([0, 1]® + B) and assume ¢t < 2~ ™/2k, since other-
wise (6.22) follows from the trivial estimate

wr+1(g:t)p=cllglly,
where ¢ depends only on k. Now pick any h € R*, |h|, <t and observe that
(6.23) |Aft1p(2™x —a)| = |Ak@(2™x 4+ 2™h — o) — Akp(2™x — a)|
< clhls2m™ Imlax I(D"@)2™y — a) — (D"9)(2"z — a)|
nl =k

for some y, z on the line segments connecting x + h, x + (k + 1)h and x, x + kh,
respectively. Here the constant ¢ depends only on k and s. By Lemma 6.1 D"¢ is
Lipschitz continuous of order § for || = k. Hence |A¥" p(x)| < ¢ |h|%5*?. Since
|y — z|, < (k + 1)|h|,, we obtain by translation and dilation

(6.24) AN T (2™ x — a)| < c(12m)**?

where the constant ¢ depends only on s, k and 6, the constant from Lemma 6.1.
Since supp (A¥*1@(2™. — a)) has measure < ¢2 ™™, for some constant ¢ depend-
ing only on k and a, one obtains

(6.25) [AK (2™ — )|, S c27m/P(r2m)k+e

Now let g =) 74, 2™P(2™- —a)e V,. Since the set Ay = {aeZ* I, 5N
supp(Af*1o(2™- — a)) + ¢} has finite cardinality which can be bounded inde-
pendently of me N and e Z*, we obtain

IAR gl (Imp) S ¢ Y |4 2mP2 7P (2m)E 2

aeAg

and therefore

||A§+1g||5(1m,,,)§c< y Ma|p>(t2m)(k+a>,,_

xe Ay

Summing over feZ° yields, in view of the uniform finiteness of A,

(6.26) 1AL gl < C(t2'")“‘+"“’( > |M”> :

aeZ?®

Since the stability estimate (6.2) is equivalent to the fact that the relation

(6.27) A1l ~I Zr A2™Pe2" - — )|,

holds uniformly in m € N, the claim (6.22) follows now, in view of the definition
of g, from (6.26) and (6.27). O
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Note that the smoothness condition on ¢ in Proposition 6.2 is slightly stronger
than that in Proposition 6.1. The advantage of requiring ¢ € C* is that Lemma 6.1
automatically guarantees some extra Holder continuity. Moreover, relatively
simple conditions on the mask a, for instance in terms of factorizations of the
symbol of a, are available that guarantee the derivatives of ¢ up to a certain degree
to be continuous [CDM].

6.3 Discrete norms and Besov spaces

We adhere to the notation in Sect. 4 and assume again that 2 is a sequence of linear
projectors Q ; mapping any V,,, m 2 j, onto V;. The corresponding discrete norms
are then defined in a completely analogous fashion with W;:=(Q; — Q;-;)V;.In
view of Proposition 6.1 and Proposition 6.2, Theorem 4.1 and Proposition 4.1 yield

Corollary 6.1. Let ¢ e C¥ be a-refinable and stable. Then, for each 0 <r <k + 6
there exist constants 0 < ¢, c, < oo independent of ge V,,, me Ny, such that

c
(6.28) 19l empe 100550 S c2lghumpar 9€Vm

where 6 > 0 depends only on a.

Corollary 6.2. Suppose that, in addition to the assumptions in Corollary 6.1, the
Q; are uniformly bounded on L ,. Then

Il ooy ~ Nl By, forO<r<k+d.

It is perhaps worthwhile relating the above observations to a concept discussed
for instance in [O1] in connection with finite element spaces. To this end, we
introduce the spaces A}, , = A} (@), r > 0,1 < p, g < oo, consisting of all elements
fin L, such that

IS ag,qi=inf {1 {27 19l p}jenollr, i f = ) gj»gj€Vi} < 0.
=0

J

Clearly, A, ,(¢) equipped with this norm is a Banach space.
Defining again

En(f)p:= inf [ f=gll,,

geVm
we note next

Remark 6.1. The expression

“f”p,q,r:= “f”p + ”{ZrmEm(f)p}MEINo H/q

defines an equivalent norm on A7}, ,.

In fact, the estimate

(6.29) If N ag,e S cllflpgr
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follows readily by choosing g; = P; — P;_;, P_; = 0, where P; is a best approx-
imation to f from V;. Conversely, observe that for u < 1

© © 1/n
T é( Y ||gj||‘$>

j=m+1 j=m+1

En(f)p =

p

is valid for any representation f= Z;‘;og j- The latter estimate combined with
a discrete Hardy type inequality yields the converse inequality to (6.29), thereby
proving the above claim. a

Recall next that, under certain circumstances, | - | ,.4,, €stablishes a norm for
the Besov space B, , [DP1]. The equivalence of the norms |- |, ., and ||},
has already been established in [ DJP] for a similar setting, however under slightly
more restrictive assumptions on ¢ and for a somewhat smaller range of r.

Corollary 6.3. Suppose ¢ € C¥ is a-refinable and stable. Then there exists some
0 < 0 £ 1, depending only on a such that

B,,=A4,,0), O0<r<k+d6, 1=Sp g,
and |+~ Il a3.q-

Proof. The Jackson estimate (6.6) implies, as in the proof of Propositition 4.1, the
estimate (4.15) which immediately yields

Bl < Apq(0)

for the required range of r, p, ¢ with a corresponding norm estimate. In view of the
Bernstein inequality in Proposition 6.2, the converse estimate is an immediate
consequence of the estimates following (4.7) in the proof of Theorem 4.1 with
y=k+ 0. O

6.4 Wavelets

In view of Theorem 3.1, uniformly bounded condition numbers are obtained when
v, = 0O(1), m > 0. By (6.6) and Proposition 4.1 this is, for instance, the case when
2 is uniformly bounded on L,. Thus, a natural choice for Q; would be the
orthogonal projection of L, onto V; so that

(6.30) VieiLW;, jelZ,
and
(6.31) 1Q;f—fll2=Ei(f)2.

This choice corresponds to the Bramble-Pasciak-Xu preconditioner. Now an
important issue is to find appropriate bases for the spaces ;. One expects the W ’s
to be spanned by the integer translates of 2° — 1 functions of the form

(632)  Yux)= Y alp(2x —a), ecE*:={0,1}*\{0} = E\{0} .

aeZ®




338 W. Dahmen and A. Kunoth

In [JM] (see e.g. Theorem 6.1 there) necessary and sufficient conditions (in terms
of the mask a) are developed when for a given compactly supported a-refinable
stable ¢, there exist additional finitely supported masks a®, e€ E*, so that the
functions

(6.33) VjealX): =252y (2Ix —a), eeE*, acZ®,

(being also compactly supported) form a stable basis for ;. in the sense of (3.10)
with ¢; = 1. Moreover, for s = 1, 2, 3 explicit expressions for the masks a¢, ec E*,
in terms of the mask a of ¢ are derived in [RS] under the assumption that ¢ is
skew-symmetric which means that for some yeR*,

(6.34) o(y+x)=0¢(y—x), xeR*,

(see also [CSW]). In fact, the refinement equation (6.1) forces y to belong to 1 Z*.
Examples of functions ¢ satisfying (6.34) are box splines (see [ BH, DM 1] for more
details) which, in turn, cover tensor product B-splines as special cases.

The functions ;. , with the above properties are usually referred to as pre-
wavelets. Of course, they include the case that even the translates /(- — ) are
orthonormal within a given level so that

(635) J' l/’j,e.a(x)wk,e’.ﬁ(x)dx = 6j,k5e.e’6a.ﬂ .
RS

The wavelets ;. , are then trivially stable and form a complete orthonormal
system for L,.

While there are several realizations of pre-wavelets, the construction of
(orthogonal) multivariate wavelets appears to be much harder. However, tensor
products of the compactly supported univariate orthonormal wavelets constructed
in [ Dau] do, of course, provide orthonormal multivariate wavelets with compact
support and any degree of regularity.

On the other hand, choosing the Q; to be orthogonal projections is by no
means the only way to guarantee uniformly bounded v,. An alternative, and
presumably more flexible concept is offered by biorthogonal wavelets. For a de-
tailed analysis of such univariate constructions we refer to [CDF]. A general
multivariate setting may be formulated as follows. Suppose that in addition to
¢ satisfying (6.1), there exists a function {e L,(R*) of compact support which
satisfies

(6.36) {x)= ) dl(2x —a),

aeZ’

where the mask d is again finitely supported, such that
(6.37) (o, l(+ —a)):= | o(x){(x —a)dx =0, a€Z®.
R

Clearly, { = ¢, d = arecovers again the case of orthogonal wavelets. The objective
is then to find additional masks a¢, d¢, e € E*, such that the functions

(6.38) Yo(x):= Y ale(2x —a)

aeZ’

Lo(x)i= 3, dgl(2x —a)

aeZ’
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satisfy the biorthogonality conditions
(639) <dje7Ce'(' —(X)> =5e.e’50,a7 e,eIGE,(XEZS,

where E = E* U {0} and yo:= ¢, {o:= (. (For the construction of d°, a®, ee E*,
see [DM41].) It is not hard to prove that the mappings

(QiN(x)i= 3 LU —a)>2"p(2/x — o)
aelZ’
are uniformly bounded projectors from L, onto V;, and that the complements
Wit1:=(Q41 — Q;)Vjsy
are spanned by the functions
(6.40) VijealX) =252y (2ix — o), ecE* aeZ*,

which form stable bases (with ¢; = 1) for the spaces W, .

To summarize these findings, let us suppose throughout the remainder of this
section that ¢ e C¥ is a-refinable, stable and admits the construction of
(pre-)wavelets or biorthogonal wavelets ;. , in the above sense. Then every
f€ L, has a unique representation

641)  f(x)= ) A(f)e(x —a)+ i Y2 e Wea(x),

aeZ’ j=0 ecE* aeZ’

and, setting A(f) = {A,(/): a€Z®}, A9(f) = {2 calf): e€E* aeZ*},jeN,,
one has

(6.42) (lll(f)l|32+ Y IM""(f)Il?2>~||fl\%-
ji=0

Moreover, Corollary 6.2 and (4.10) yield the following characterization of Sobolev
spaces.

Corollary 6.4. For ¢ as above, one has

(6.43) (lll(f)llfz + ) 22”|M‘”(f)|li>~Ilfllf.z‘
j=0

6.5 Bounded domains

To draw any conclusions from the estimates in Corollaries 6.1, 6.2 or 6.4 on growth
rates of condition numbers, one has to consider the case of bounded domains. We
wish to briefly address several instances where the above estimates apply essentially
as they are.

I. Periodic boundary conditions. Suppose 2 = [0, 1]° (or any hyperrectangle), and
one looks for 1-periodic solutions of (2.1), i.e,, for functions u satisfying

u(x) =u(x +a), acZ.
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Following [ DPS], we identify such functions with functions on the s-dimensional
torus

I’:=Rvyz*,

so that the periodization operator

[f1):= ) f(x+a)

aeZ’®

maps L,(R®) into L,([]°). Likewise, one may identify for notational convenience
the cosets [x]:= x + Z°, xe R®, with its representer in [0, 1]°. For a given refin-
able function ¢ and corresponding pre-wavelets or biorthogonal wavelets ., e€
E*, let

l‘/;j,O,az = (Z)j,a:'—’ 2jS/2[(p(2j ¢ = (X)], lpj,e,a = [l//j,e,a]; jGNO’ eeE*, aezs 5
where the ¥ ; . , are given by (6.40), and define

Si:=span{@;,: aeZ>'},
where
Z5i:= 7°)(2Z°) .

As pointed out in [DPS], the spaces S; are nested and form a multire-
solution analysis on L,(]]°), provided ¢ generates a multiresolution analysis on
L,(R®). Moreover, the original orthogonality conditions like (6.30), (6.35),
or (6.39) carry over to analogous conditions relative to the inner product
{figon= j[O,,]sf(x)g(x)dx, as long as one shifts in Z>/,

It is clear that the corresponding Jackson and Bernstein estimates remain valid,
and so do the above norm estimates relative to the corresponding 1-periodic Besov
spaces. Hence we infer from Theorem 3.2 or from (6.40) and Corollary 3.1
combined with Corollary 6.4, that, for ¢ as above, the stiffness matrices M, relative
to the basis

{G0.0: 0EZ*°} U { Y} cn: e€E* 0 eZ* j=0,...,m}
satisfy
(6.44) k(D"'M,D~")=0(l), m— oo,

where the diagonal matrix D is defined by D j c.0).(j"ve'a) = 2590, j0c.c'0nar-

I11. Homogeneous boundary conditions. When in (2.1) Bu = (D*u: |a] £ k) =0on
09 (in the sense of traces), one could define S,, = V,, to be the span of all translates
(2™ - — a) whose support is contained in Q so that S,, =« H§(Q). Again uniform
boundedness (6.44) is obtained. However, if the supports of the ¢(2™ - — «) do not
match the boundary in a proper way, one expects that the accuracy of such
a scheme deteriorates near the boundary.

It is therefore still important to consider

I11. The general case. A possible choice would be to define S,, = V,, to be spanned
by those translates (2™ — o) whose support intersects Q. Under our general
assumption on Q, the characterization of the corresponding local Besov spaces
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remains the same (cf. [DP1]). Using extension arguments, the Jackson and
Bernstein estimates remain valid as well. Thus the above estimates still apply
provided that the particular way of enforcing (essential) boundary conditions is
compatible with the ellipticity of the problem. These issues will be studied in more
detail in a forthcoming paper.

6.6 Computational aspects

We will conclude this section with briefly commenting on some principle computa-
tional consequences arising from the refinability of the generating function ¢.

The first issue is to compute the entries of the stiffness matrices 4,, relative to
the basis functions @(2™ - — a) on the finest level (which corresponds to a ‘nodal’
basis), as well as of the stiffness matrices M,, relative to the multilevel basis.
Concerning A, (ignoring again for the moment boundary effects), this amounts to
computing quantities of the form

(6.45) [ cpp(x)(D"p)(2™x — a)(DPp)(2™x — o) dx .
R

It is shown in [DM3] that the computation of even more general expressions of the
form

n

(6.46) | TI (D"@)(2™x — o')dx ,
Rfi=1

where each ¢; is a;-refinable, say, and the m; are possibly different integers,
reduces, for each fixed collection of ¢;’s and #n'’s, to the solution of a single
eigenvector-moment problem, independent of the m;, a’, whose size depends only on
the support of the ¢;’s. Of course, when the coefficients c, z(x) are actually
constant, this method applies for n =2, m; =m, and ¢, = ¢, in (6.46). For
non-constant coefficients, one could choose a possibly different refinable function
¢ along with some local approximation scheme

(Bw [)(x):= 3}, Fualf)pQ™x —0),

aeZ’

where the F ., are suitable functionals supported in a small neighborhood of
2™ q, and replace ¢, 4(x) in (6.45) by (B¢, z)(x). Such schemes are well
understood when ¢ is for instance a tensor product B-spline or a box spline (see
[BH, DM1, DM2]). Here m’ has to be chosen so that the overall accuracy is not
decreased by the resulting ‘quadrature error’. In the case of variable coefficients,
one has to compute then quantities of type (6.46) with n=3, m; =m, =m,
my=m' and ¢, =@, =@, 93 =¢P,n3 =0. The same strategy or an iterative
procedure also pointed out in [DM3] could be used to compute the entries of the
right hand side of the linear system. At any rate, the refinability of ¢ allows to solve
these tasks very efficiently so that the matrix 4,, would be available at relatively
low cost.

Using (6.32), the entries of M, could be computed in the same fashion. On the
other hand, it is not difficult to determine the matrix L,, in (2.10) which performs
the corresponding change of bases and yields the preconditioner C,, = L,, LY. To
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describe this, let Q,, denote the grid of level m consisting of points of the form
27"y, €Y, < Z°. Q,, typically contains all points in 2 ™Z* whose distance
from Q is of the order at most 2~ ™. This set agrees, except perhaps near the
boundary with

{(2B+e)2" :e€E, €G-y} .

Denoting for the sake of convenience a®:= a and adopting this ordering for the
columns in our matrices, we define first a matrix L{!’ by setting

(6.47) (L%’ )@ 28+e) = z-2p, PBEGm-1,e€E, 0€9,, .
Now the relations (6.1) and (6.32) just mean that
(L) T ALY

is the stiffness matrix relative to the basis consisting of (2™« — B), W -1 o5, €€
E*, fe%,,,, e, of the (nodal) basis for S, ; and the basis of W,,. Analogously,
we form the matrix L{» relative to 4,,_, and then extend L{? to a matrix of size
#%, by setting

(L(mZ))Za.Za':z (Lsnz))a,a'a a, O‘/Egm—l s

while

(L(mZ))Za+e,2a’+e/ = 6a,a'5e,e’v a, a/egm—-la e, ele E* .
Forming the matrices LY, j = 3,4, ..., m,in a completely analogous fashion, we
obtain

_ 1 (
L,=LY ... .Lm

as the desired transformation matrix.

Acknowledgements. We thank F. Bornemann very much for his valuable comments, in particular,
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