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Robust Regressionof ScatteredDatawith Adaptive
Spline–Wavelets

Daniel Castãno and AngelaKunoth

Abstract— A coarse-to-fine data fitting algorithm for irr egu-
larly spaceddata basedon boundary–adapted adaptive tensor–
product semi–orthogonal spline–wavelets has been proposed in
[CK1]. This method has been extended in [CK2] to include
regularization in terms of Sobolev and Besov norms. In this paper,
we develop within this least–squares approach some statistical
robust estimators to handle outliers in the data. Our wavelet
scheme yields a numerically fast and reliable way to detect
outliers.

Index Terms— Scattered data, outlier detection,robust estima-
tion, adaptive wavelets,coarse–to–fine algorithm.

I . INTRODUCTION

In [CK1], we have proposedan adaptive method of least
squaresdata fitting basedon wavelets which progresseson
a coarse–to–finebasis. The algorithm works on structured
grids and is, therefore,particularly useful to implementus-
ing tensorproductsin more than one spatial dimensions.A
favourablefeatureof the schemeis that there is no explicit
grid constructionlike whenusing,e.g.,data–dependenttrian-
gulations.In this sense,the datarepresentationis independent
of the original cloud of data points. Theseadvantageshave
madeapproacheson structuredgrids a well established,much
followed and universally applicableprocedure,covering the
whole rangefrom strictly mathematicalanalysisto applica-
tions in various areasof sciences, see, e.g., [GG], [GHJ],
[GH], [He], [HPMM], [HR], [LWS], [PS], [SHLS], [Sch], [Z].
Waveletsasbasisfunctionsfor the representationof scattered
data provide additional featuresin the problem formulation
regardingcomputationalefficiency aswell assparseness of the
representation,suchasgoodconditioning anda naturalbuilt–
in potential for adaptivity (see,e.g., [Ch] for an introduction
to basicwavelet theory).

We briefly wish to recall for further referenceour approach
in [CK1], [CK2] andsomepropertiesof the waveletswe em-
ploy here.Supposewe aregiven somesetX = {xi}i=1,...,N ,
consistingof irregularly spacedand pairwise disjoint points
xi ∈ Ω := [0, 1]n, n ∈ {1, 2, 3}. For each i, we denote
by zi ∈ IR the correspondingdata making up the set Z.
The problemof scattered data fitting with regularization(of
Tikhonov type) canbe formulatedasfollows: Find a function
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f : Ω → IR that approximatesthe cloud of points (X,Z) in
a leastsquaressense,that is, f is to minimize the functional

J(f) :=
N

∑

i=1

(zi − f(xi))
2

+ ν‖f‖2
Y . (I.1)

HereY may be a Sobolev spaceY = Hα or a Besov space
with smoothnessindex α, and the parameterν ≥ 0 balances
the datafit with a user–specifiedregularity of the representa-
tion f . In particular, we want to constructan expansionof f
of the form

f(x) =
∑

λ∈Λ

dλ ψλ(x), x ∈ Ω. (I.2)

Thesetof basisfunctions{ψλ}λ∈Λ is a subsetof thewavelets
describedin [SDS]. They have the following properties:each
ψλ is a tensorproductof a certainboundary–adaptedlinear
combinationof linear B–splines,denotedas (pre)waveletsor
shortly wavelets. From a computationalpoint of view, this
is very advantageoussince we can practically work with
piecewise polynomials.The index set Λ is a lacunaryset of
indices resulting from an adaptive coarse–to–fine procedure
explained below. We denotethe infinite set of all possible
indicesby II. Eachindex λ ∈ II is of the form λ = (j,k, e),
where j =: |λ| denotesthe level of resolutionor refinement
scale, k the spatial location, and e ∈ {0, 1}n the type of
wavelet in more thanonespatialdimensionwhich is induced
by tensorproducts,seee.g.[D1], [DKU], [SDS].Eachwavelet
ψλ hascompactsupportsatisfyingdiam (suppψλ) ∼ 2−|λ|.
The relationa ∼ b always is to meanthat a canbe estimated
from above andbelow by a constantmultiple of b independent
of all parameterson which a or b may depend.In view of the
finite domainandthe compactsupportof the basisfunctions,
thereis by constructiona coarsestrefinementlevel j0 (j0 = 1
in thecaseof piecewiselinearwaveletsconsideredhere). Basis
elementswith multi–index e = (0, 0) only occur on level
j0. They are called scaling functionsand are tensorproducts
of piecewise linear B–Splines.For e 6= (0, 0), ψλ represents
detail informationof higher frequencies.

Consequently, f(x) in (I.2) can be split into a scaling
function term anda waveletterm,

f(x) =
∑

λ∈Λ, j=j0, e=(0,0)

dλ ψλ(x) +
∑

λ∈Λ, j≥j0, e 6=(0,0)

dλ ψλ(x).

(I.3)
The complete collection of scalingfunctionsand wavelets

{ψλ : λ ∈ II} constitutesa Rieszbasisfor L2(Ω). Moreover,
one has norm equivalencesfor functions in Sobolev spaces
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Hα = Hα(Ω) (or, even moregeneral,in Besov spaces[DV])
in the rangeα ∈ [0, 3/2) of the form

‖
∑

λ=(j,k,e)∈II

dλ ψλ‖
2
Hα(Ω) ∼

∑

j≥j0

22αj
∑

k,e

|dj,k,e|
2. (I.4)

Since such smoothness spacescan be characterizedin this
way, togetherwith their compactsupport wavelets suggest
themselvesasa powerful analysistool for many purposes,see,
e.g.,[D1], [CDLL]. In addition,the waveletswe employ here
aresemi–orthogonal with respectto L2(Ω), i.e., for |λ| 6= |µ|
we alwayshave

∫

Ω
ψλ(x)ψµ(x) dx = 0.

Returningto the least squaresfitting problem (I.1), adap-
tation to the given datais achieved in [CK1], [CK2] through
the construction of an index set Λ ⊂ II as follows. Starting
on thecoarsestlevel j0, we chooseherethesetΛj0 of indices
of all scalingfunctions and waveletson this level. An initial
fitting functionf j0(x) :=

∑

λ∈Λj0
dλ ψλ(x) is constructedon

this index set by minimizing J(f j0) or, equivalently, solving
the normalequations

(ATΛj0
AΛj0

+ νRj0)d = ATΛj0
z (I.5)

iteratively using the conjugate gradient method.The matrix
Rj0 is in the caseof Y = Hα a diagonalmatrix of the form
Rj0 = diag(22α j0). The observationmatrix AΛj0

hasentries

(AΛj0
)i,λ := ψλ(xi), i = 1, . . . , N, λ ∈ Λj0 , (I.6)

andz andd in (I.5) arevectorscomprisingtheright handside
data{zi}i=1,...,N and the expansioncoefficients {dλ}λ∈Λj0

.
The norm equivalence (I.4) for α = 0 and the locality of

the ψλ reveals that for e 6= (0, 0), the absolutevalue of a
coefficient dλ is a measureof the spatialvariability of f j0 on
suppψλ: a largevalueof dλ is understood asan indicatorthat
further resolutionin this areaof thedomainis desired.On the
other hand, in order to keep control over the computational
complexity, if dλ is below a certain user–definedthreshold,
this coefficient is consideredirrelevant and will be discarded
from the approximationin order not to spoil the complexity.
The index set is modified accordingly. This motivates us
to construct in the next step a refined index set Λj0+1 by
includingthosechildrenof thewaveletsindexedby Λj0 whose
coefficientsareabove someprescribedthresholdingvalueand
in whosesupporttherearemorethana fixednumberq of data
points.Note that this strategy generates an approximationon
a tree as index structure.The procedureis repeateduntil at
somedyadichighestresolutionlevel J eitherall thecomputed
coefficients are smaller than the thresholdingvalue, or none
of the children whosesupportsshrinkswith eachrefinement
step containsenoughdata points in their support. Then the
algorithmstopsgrowing the tree. As the dataset is finite, the
algorithm finishesin finitely many steps.The final index set
is then a lacunarytree index set Λ = ΛJ . We wish to point
out that the highestresolutionlevel J is solely determinedby
the datato be fitted. As to the choiceof q, one candetermine
conditionson thenumberof pointsandtheirdistributionwhich
guaranteeby the Theoremof Schoenberg-Whitney that the
observation matrixAΛj

hasfull rank [Ca]. A smallernumber
q (larger than the minimal) may generatea tree of greater

depthwhile a largernumberdoestheopposite.(We foundthat
the bestcompromisebetweengeneratingsufficient hierarchy
in the tree,quality of the approximationand performanceof
the algorithmis achieved for q = 8 in 1D andq = 100 in 2D
whichwehaveusedin all thesubsequentnumericalexamples.)

Note that we have in the least squaresfunctional (I.1) in
fact two parameters,the smoothnessindex α and the weight
parameterν balancingthe approximationandthe smoothness
part, to adjustasbestaspossibleto thegivendata.In orderto
computethe weight parameterν, often a generalizedcross
validation techniqueis employed. This requiressolving an
additionalsystemof thetypeof thenormalequations. In [Ca],
[CK2], we have further exploited the multilevel framework
providedby wavelets: we have introduceda multilevel version
of the crossvalidationprocedure.This schemeturnsout to be
bothrelatively inexpensive from a computational point of view
aswell asadjusting nicely to smoothnessrequirementsaswell
as to localizationeffects.

It should be mentioned that we always solve the least
squaresproblem using normalequationsas in (I.5). We have
observed in our numerical experiments that the condition
numbersof ATΛAΛ arerelatively moderate,which is inherited
from thewell–conditioning of thewaveletbasisrelative to the
L2 inner product.Togetherwith employing a nested iteration
strategy in the coarse–to–finealgorithm, taking the solution
from the previous level as initial guessfor the refinedindex
sets,we have documentedin the experiments in [CK1] that
iteration numbersfor a conjugate gradient method on the
normalequationsarevery moderate.Also we have found that
the approximationerror, comparingthe reconstructionwith
the exact valueof J(f) definedin (I.1), is acceptable[CK2].
We have, in addition, comparedapproximationerrorsof our
resultswith the normal equations with approximationerrors
for a leastsquaressolutioncomputedusingQR decomposition
of AΛ and we found only negligible differences,while the
iterationstook much less time for the normal equations.As
a third point worth mentioning,under theseconditions, for
#Λ � N which is mostly the casehere,forming the normal
equationsentails in fact somedata compression effect, as a
largeN only appearsasthe sizeof the sumsin the entriesof
(ATΛAΛ)λ,µ =

∑N
i=1 ψλ(xi)ψµ(xi) andnot in the sizeof the

matrix of the normalequations.
Multiscale data fitting schemeswhich may or may not

includea smoothingterm have beendiscussedin many other
references,see [CK2] for further details. Previously to the
studiespresentedhere, we have alreadygained someexpe-
riencewith wavelet analysisof geoscientificdataon uniform
grids using the Fast Wavelet Transform(FWT) [GHK]. We
wish to stressthat for the scattered data fitting procedure
consideredin this paper, employing theFWT on uniform grids
would requirethe introductionof someartificial uniform grid
whichwouldspoil thecomputationalcomplexity. All theabove
mentionedaspectsare describedin detail in the dissertation
[Ca] where alsotheemployedsoftwarehasbeendocumented.

After describing the essentialfeaturesof our algorithm,
this paper is devoted now to statistical robust estimatorsto
handleoutliers in thedata. Again we will seethatwe cantake
advantageof the multilevel structureof the wavelet setup.
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The remainderof this paper is structuredas follows. In
Section II, we propose an LSW–specific (Least Squares–
Wavelet) methodologyfor robust estimationof outliers. Its
basicsare describedin SectionIII. SectionsIV through VI
discussglobal andlocal outlier detectioncriteria. SectionVII
is devotedto theissuehow to detecta large numberof outliers
in thedata.ThenSectionVIII discussesotherformsof energy
criteria to measurethe performanceof our algorithm.Finally,
we describein Section IX the extension of our method to
higher spatialdimensionsand concludewith its performance
on geophysical datasets.

I I . AN LSW–SPECIFIC METHODOLOGY FOR ROBUST

DATA FITTING

We will develop an LSW (LeastSquares–Wavelet) scheme
to detectoutliers which exploits the least squares approach
describedabove. First, we have to discusshow an outlier can
bedefined.We try to mimic theprocessby which the ‘human
eye’ tells uswhatanoutlier is: thepresenceof anoutlier must
createa ‘cusp’ in theapproximatingfunction. Thus,anoutlier
is recognizedasan artifact which is extremelywell localized
in spaceand frequency. This is one of the reasonswhy we
think that the wavelet framework is the method of choice
to detectoutliers. Other frameworks separatethe removal of
outliersand the wavelet analysisof the data.In contrast,here
we ratherwant to build the outlier detectioninto the wavelet
representationand take advantageof it. As describedabove,
the result of the data fitting procedureis the construction
of a function f in the form (I.2) which represents the data.
Thus, it seemsnatural to transferthe problem of the outlier
definition from the point of view of the raw datato the point
of view of approximatingf . If the approximatingfunction
correctly catchesthe datafeatures,the presenceof an outlier
must consequentlycreatea local jump in the approximating
function. Otherwise,if f is not affected by the outlier, the
schemedoesnot have to take the outlier into account.

This leadsto reformulatethe problemas follows: how can
onedefinethesejumpsin a rigorousmathematicalway which
is at the sametime easy to implement, and how can one
distinguishjumps createdby outliers and jumps containedin
thedata? Figure1 illustratesfour areasof differentprototypes
of outliers and various types of data which we need to be
able to handle.In the first areafrom the left we find a point
which is definitely classifiableas an outlier. This helpsus to
fix the criterion that a well–performing methodshouldmark
the correspondingpoint (x100, z100) asan outlier. The second
arearepresentsacuspreally representedin thedata.Thepoints
in this areaare not to be marked as outliers.Moreover, they
are the representatives of a high frequency phenomenonof
the data.The accidentalremoval of points in this areawould
eliminate significant information about this local structure.
Like in Area 1, the datain the third areapresentsa spatially
locatedhigh frequency feature.In this casethe frequency is
lower than in Area 2, so that more points from the dataset
are involved in the representationof the local structure.This
could representa noncritical areaof the domain.No outlier
is present.A removal of somepoints on this areadoesnot

necessarilyeliminatesignificantinformation,asthe remaining
pointswould certainlyreproducethelocal featuresof thedata.
The point (x800, z800) in Area 4 is an outlier embeddedinto
a highly energeticzone.Thesekind of pointsposethehardest
difficulties to outlier detectionalgorithms.On one hand,the
neighborhoodcanmaskthe effect of the outlier. On the other
hand,neighboringpoints carry significant information about
the local structureon the data,and falseremoval in this area
shouldbe avoidedby any means.
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Fig. 1. SyntheticDataSet1 with N = 1000 datapointsshowing different
typesof outliers (left). Local detailsof the data(right).

The wavelet representationof the data allows for an ex-
tremelypracticalanswerto both questionsraisedabove:

• Concerningthe identification of jumps, there is a vast
amountof literature,see,e.g.,[Co], [Hu], [LW].Thebasic
idea is that the presenceof a jump is reflectedby large
wavelet coefficientsof the approximation.

• Outlier–causedjumpscannotbedistinguishedfrom data–
inherentjumps solely by inspectionof the wavelet rep-
resentationof the data. In fact, one has to inspect the
point themselves and analyze how individual points in-
fluence the wavelet representation.We find below that
this taskcanbeeasilyperformedafterhaving constructed
the LSW–approximationto the datadescribedbelow, as
all the information neededto perform this analysishas
alreadybeenprocessedin the data structures.
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Fig. 2. Adaptive reconstructionof syntheticData Set 1 with #Λ = 190
wavelets (left) and resulting wavelet coefficients (right: on the y–axis the
resolution levels are shown, the x–axis displaysthe spatial location of the
wavelet coefficients.Larger wavelet coefficientsaredarker in color). Highest
resolutionlevel in Λ is J = 8.
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I I I . BASICS OF THE LSW–APPROACH

Without treating the outliers in any specific way, our al-
gorithm producesthe resultsshown in Figure 2. Clearly the
outliersproduceundesiredartifactsin Areas1 and4.

After performing the LSW–datafitting algorithm, we end
up with two objects:

1) the coefficients{dλ}λ∈Λ of the constructedapproxima-
tion f (I.2) as the main productof the algorithmand

2) anefficient encodingof theobservationmatrixA = AΛ,
which wasusedandupdatedin the process.

The main computationaleffort lies in the constructionof A,
which implicitly containsa completeanalysisof thedata.This
will be exploited in our approachwhich we proposenext. We
separatethe outlier finding procedureinto threesteps:

I. Locatethe areas in which an outlier can be present. As
explained previously, this can be performedby simple
inspectionof the coefficients {dλ}λ∈Λ, as the presence
of outliers must causelarge wavelet coefficients at high
levels. One evident possibility could be to choose a
thresholdingparameter ε anda smallestrefinementlevel
jcut which modelsthe expectedpenetratingdepthof the
outliers,and to identify a set of waveletsindices

Λε,jcut
:= {λ ∈ Λ : |dλ| ≥ ε and |λ| ≥ jcut}. (III.1)

II. Next, we couldextractout of theoriginalN pointsthose
embeddedin the supportof a waveletψΛ suchthat λ ∈
Λε,jcut , andrecordtheir indicesin a setS:

i ∈ S : ⇐⇒ λ ∈ Λε,jcut
so that xi ∈ supp ψλ. (III.2)

This stepserves only to reducethe numberof points in
outlier–affectedareas.

III. Testall the points in the areasidentified in the first two
steps.Basically, a merit criterion ω(i) is computed for
eachpoint includedin S, which serves asan ‘outlierness
indicator’.Pointswhoseω is aboveapredefinedthreshold
τ arediscardedfrom the dataset.
This is the decisive part of the algorithm,asthe concrete
mathematicaltranslationof the outlier concepthasto be
built into the computationof the merit criterion.

We have actuallyset ε = 0 in orderfor thepointwisecriterion
in III. to be most effective. Remarkson the choice of jcut

are given at the end of SectionV. In the next sectionswe
describeandanalyzeseveralwaysto constructmeaningfuland
computationallyfastoutliernessprofilesω(i) for i ∈ S.

IV. GLOBAL REFITTING CRITERION

We startwith a set S of indicesof pointswhich have been
identified as possibleoutliers by the first two stepsof the
previous section,as they lie in the support of waveletswith
large coefficients. Considerone of thesepoints, (xi, zi) for
i ∈ S and test if it is an outlier. As mentionedabove, in our
approach,the basisof this testwould be to measureto which
extent its presencealterstheshapeof theapproximation.This
goal canbe attainedin three steps:

1) Constructan approximation to the whole dataset.

2) Constructan approximation to the whole set of data
except the point (xi, zi) to be checked. In order to do
so,we use thesameconfiguration of waveletswhich has
beenusedto computethe approximationto the whole
dataset.Thus,we compute

f [i] := arg min
g=

∑

λ∈Λ dλψλ

∑

` 6=i

(z` − g(x`))
2
. (IV.1)

3) Comparethe behavior of f and f [i] in the ‘neighbor-
hood’ of xi.

Elaborating this last point, this can be done in a natural
way using the wavelet coefficients. First of all, we needan
interpretationof theconceptof neighborhood. To this end,we
definethe influenceset of a point (xi, zi) startingfrom level
j in the index set Λ as the subsetof thoseΛ which includes
indicesof all waveletswhosesupportcontainxi. We denote
this neighborhoodas

Λ
[i]
j := {λ ∈ Λ, |λ| ≥ j : xi ∈ supp ψλ}, (IV.2)

or shortlyΛ[i] whenthesubscript j is clearor irrelevant.Now,
we comparethe local behavior of f and f [i]. We define the
local energy of a function by meansof a weightedsummation
of a subsetof its waveletcoefficientsasfollows: for a function
g =

∑

λ∈Λ dλψλ on Ω anda setΛ′ ⊂ Λ, we define

EΛ′

α,p,r(g) :=
∑

j






2j(α+n/2−n/p)





∑

k,e∈Λ′

|dj,k,e|
p





1
p







r

.

(IV.3)
This definitionreliesapparentlyon thenormequivalencerela-
tion betweenBesov seminormandwaveletcoefficients,similar
to (I.4), compare[HKPT]. Although it may be interestingto
choosedifferent values of p and r, we have always taken
p = r = 2 in which case(IV.3) is equivalent to a Sobolev
semi-normand we abbreviate EΛ′

α (g) := EΛ′

α,2,2(g). In view
of the norm equivalence(I.4), if (xi, zi) is indeedan outlier,
in the neighborhoodof xi the local energy of f [i] should
be much smaller than the local energy of f . This motivates
the following definition: we definethe merit profile of point
(xi, zi) accordingto a global criterion as

ωglobal(i) := log





E
Λ

[i]
j

α (f)

E
Λ

[i]
j

α (f [i])



 . (IV.4)

With this definition, in view of Step (III) from Section III,
we found in our experimentsthat a typical thresholdingvalue
denotedby τ which performs well should be in the order
of magnitudeof 1. Points (xi, zi) for which ωglobal(i) ≥ τ
are then classifiedas an outlier, whereaspoints for which
ωglobal(i) < τ arenot.Thismeansthatin ourmodelweexpect
thepresenceof anoutlier to causea noticeable increaseof the
local energy.

Revisiting the syntheticDataSet1 from Figure 1, we next
explore in detailhow this methodworksfor thedifferentareas
representedin the data.If we take the outlier (x100, z100) and
computethe global approximationsf and f [100], we obtain
thewaveletcoefficientsillustratedin Figure3. As expected,no



TRANS. IMAGE PROC. 6

differenceis visible outsidetheredbox in theupperleft corner
of the wavelet coefficientsstartingat level 4. The presenceof
the outlier really doesact locally. We illustrate this in more
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Fig. 3. Globalremoval criterionappliedto (x100, z100). Waveletcoefficients
of f (left) andof f [100] (right).

detail in Figure4. In thefirst plot we compare f (dashedline)
and f [100] (solid line) in the neighborhoodof (x100, z100).
The former obviously doesnot needto createthe jump that
tries to reproduce the point (x100, z100). This is reflectedby
thecoefficientsof thewaveletsin Λ[100], asonecanseein the
following plotsof thesamefigure:theenergy contentof theset
Λ[100] is practicallyemptyafter subtracting(x100, z100) from
thedata.In computingtheenergy, a cutting level jcut = 3 was
chosen.The local measureof energy hasparametersα = 5.
Criterion(IV.4) would give a merit criterionof ωglobal(100) =
7.02.
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Fig. 4. Global removal criterion on (x100, z100). Local view of f (dashed
line) and f [100] (solid line) (figure on the left). Coefficients of wavelets in
Λ[100] for f (middle) andf [100] (right).

The samecomputationfor the regular neighboringpoint
(x102, z102) gives the coefficient to measurethe ‘amount of
outlierness’asωglobal(102) = 0.0078, asits removal doesnot
critically vary the local energy, seeFigure5.
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Fig. 5. Global removal criterion appliedto (x102, z102). Local view of f

andf [102] (left). Coefficientsof waveletsin Λ[102] for f (middle)andf [102]

(right).

Furthermore,the point (x251, z251) is locatedin the middle
of a fine structurefeatureof thedata.Theremoval of thepoint
damagesbut doesnot destroy the structure, as can be seen
from Figure6. Thesimilarity of the two approximationsgives
an outliernesscoefficient of ωglobal(251) = −0.27. Thus, the

algorithm will mark it as a regular point, preventing the loss
of information.
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Fig. 6. Global removal criterion appliedto (x251, z251). Local view of f
andfi (left). Coefficientsof waveletsin Λ251 for f (middle)andf251 (right).

Finally, we considertheoutlier (x800, z800). As it is located
in a highly energetic environment, it is more complicated
to disentangleits effects from those of the data features. In
Figure 7 one can see that the local energy decay caused
by the subtraction of the point is not so dramatic as in
the caseof the outlier in a flat background,comparewith
Figure 4. Nevertheless,(x800, z800) attainsa merit value of
ωglobal(800) = 1.2, so that the method would classify the
point correctlyasan outlier.
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Fig. 7. Global removal criterion appliedto (x800, z800). Local view of f
andfi (left). Coefficientsof waveletsin Λ251 for f (middle)andf251 (right).

Removal of Points in Normal Equations. Despite these
convincing results, theproposedstrategy hasanobviousdraw-
back: it requiresthe computation of f [i] for every suspicious
point (xi, zi). This amountsto constructandsolve a different
setof normalequationsfor every i. Fortunately, the structure
of theproblemallows for somepossiblesimplifications if one
considersthe linear systemwhich is to be solved for the data
fitting procedure.Abbreviating the normal equationsof the
original problem(I.5) byMd = b andthenormalequationsof
theproblemwith thepoint (xi, zi) removedbyM [i]d[i] = b[i],
the relation betweenthe two systemscan be expressedas
M [i] = M − aTi ai, and b[i] = b − aTi z, where ai denotes
the i–th row of the observation matrix A.

This structuremakes the constructionof the new normal
equationsa trivial task and allows for two possibleways to
simplify the solutionprocess:

1) Under our assumption of an outlier having only an
effect local in scaleand space,one expectsd to be a
good approximation to d[i]. Thus, an iterative method
needsonly few iterationsto find d[i] having d as initial
guess.This is particularly so if the matrix M is well–
conditioned,asit is in our caseherewhenworking with
our boundary–adaptedspline–wavelets[CK1].

2) The inverse of M [i] is available by meansof the inverse
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of M , using the Sherman–Morrison identity

(M [i])−1 = (M − aTi ai)
−1 = M−1 +

M−1aTi aiM
−1

1 − aiM−1aTi
.

Of course,a direct application of this formula is not
advisablein general,as it requires the inversion and
storageof the inverseof M (or of its QR factorization).
In view of the sparsity structureof M , this resultsin a
computationalcomplexity of orderO((#Λ)2 log(#Λ)).
In caseswherewe cantake full advantageof adaptivity,
namely, when a large amountof data can be described
by only a small numberof wavelets, i.e., #Λ � N ,
the computational complexity would thereforestill be
relatively small.

We exploit this laterin SectionVI wherewe usetheSherman–
Morrison formula on the normalequations.

V. LOCAL CRITERION

The method described in the previous section seemsto
give a very reliablecharacterizationof outliers. It attainshigh
outlier detectionratesin all our experiments.The drawbacks
of this method are thereforenot of conceptualbut merely
of computationalnature: it can involve severe costs when
recomputinga new approximatingfunction f [i] for every point
(xi, zi) to be checked.

In this section we presenta modification of the above
algorithmto speedup the computationswhich usesthe semi–
orthogonalityof the wavelet basis.

Recall that the commongroundfor outlier detectionis the
comparisonof f andf [i]. This comparisonis donelocally in
space,selectingwavelets locatedaround the location of the
outlier, and frequency, picking the higher scales.According
to this implicit characterizationof outliers basedon local
features,the idea now is to replacethe comparisonof f and
f [i] with a comparisonof functionswhich approximatef and
f [i] locally. To this end, we consideran approximationof
the data up to some coarselevel j < J , where J is the
maximal resolution level included in the original set Λ, by
simplerestrictingthe original functionf to a maximallevel j

f j :=
∑

λ∈Λ; |λ|≤j

dλψλ. (V.1)

We constructnow local approximationsto f and f [i] in the
neighborhoodof xi by keeping the coefficients of f up to
level j andaddingonly local waveletsto describehigherdetail
features.Theselocal waveletsaretheoneswhich we included
in the set Λ[i]

j definedin (IV.2). The methodof the previous
sectionis now mimickedby building two approximations,one
that takes into account the point xi, f j,i, and one that does
not, f j,[i]. That is, we define

f j,i :=
∑

λ∈Λ; |λ|≤j

dλ ψλ +
∑

λ∈Λ
[i]
j

dj,iλ ψλ. (V.2)

wherethe vectordj,i = {dj,iλ }
λ∈Λ

[i]
j

is computedsuchthat

N
∑

`=1

(

z` − f j,i(x`)
)2

(V.3)

attainsits minimum.Notethatthelocality of waveletsincluded
in Λ

[i]
j forcesmosttermsin thesummation to bezero,andthe

non zero elementsare directly accessiblefrom the sparsity
pattern in which we have coded the observation matrix.
Likewise, we define

f j,[i] :=
∑

λ∈Λ; |λ|≤j

dλ ψλ +
∑

λ∈Λ
[i]
j

d
j,[i]
λ ψλ, (V.4)

wherethe vectordj,[i] = {d
j,[i]
λ }

λ∈Λ
[i]
j

is the LSW–fit of

∑

` 6=i

(

z` − f j,[i](x`)
)2

. (V.5)

Consequently, we can define a merit criterion basedon this
local criterion as

ωlocal(i) := log





E
Λ

[i]
j

α (f j,i)

E
Λ

[i]
j

α (f j,[i])



 . (V.6)

One can interpret this process as ‘freezing’ f j and
‘gluing’ onto it a local approximation to the set
{

(xi, zi − f j(xi)
)

}i=1,...,N . The implicit assumptionbehind
this is that ‘freezing’ and ‘gluing’ will maintain a similar
spectrumof local energies which is justified by our use of
a wavelet basis.The semi–orthogonalityproperty allows us
to operatethis ‘level surgery’ and therebytreating different
scalesseparately.
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Fig. 8. Global and local reconstructionsnear (x800, z800). Local view
of f and f3,800 (left) and removal of (x800, z800) in global and local
approximations.

Let us illustrate this procedurein Figure 8. On the left,
the black line representsthe global approximation to the
data f and the red line representsthe local approximation
f3,800 to the data. We observe that the degrees of freedom
used in the constructionof f j,i seemsto perfectly fit our
purposes,as the local approximationnear the outlier artifact
is nearly indistinguishablefrom the global approximation.
Obviously this diverges from it outsideof this narrow area.
On the right, we see in a close–upthe different functions
near the point. Solid lines include information of the point
and dashedlines do not. We observe that global (black) and
local (red) approximationsyield similar results (dashedand
solid lines diverge near the outlier and approacheachother
away from it). In addition, as one could expect in view of
the plot, the two ‘outlierness criteria’ are correspondingly
similar, ωglobal(800) = 1.2 and ωlocal(800) = 1.7. These
coefficients reflect a decreaseof more than one order of
magnitude in the respective local energies by removal of
the point (x800, z800). The merit criterion for the regular
neighboringpoint (x802, z802) is ωglobal(802) = −0.15 by the
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global criterion (IV.4) andωlocal(802) = −0.13 by the local
criterion (V.6). This indicatesthat the presenceof this point
causesjust a minor readjustment of the local reconstructionin
Figure9, amountingonly to a slight local energy variation.
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Fig. 9. Global and local reconstructionsnear (x802, z802). Local view
of f and f3,802 (left) and removal of (x802, z802) in global and local
approximations.

This procedureobviously reducesthe computationcosts
of the global method,as the numberof degreesof freedom
involved in the computation of f j,i andf j,[i] is just #Λ

[i]
j , a

fraction of the total numberof wavelets#Λ.
A further property implicit in this procedureis that the

coarsescaleprojectionf j is in factnot affectedby theoutlier.
This meansthat the effect of every outlier is restricted to
dyadic levels higher than j. This makes the selectionof j
an important issue.A too small value j resultsin including
in the local configurationΛ

[i]
j waveletsof low frequency that

do not notice the effect of the outlier. If the coefficients of
thesewavelets are much larger than the coefficients of the
high frequencies,they may mask the effect of the removal
of the outlier. In the global algorithm, the importanceof a
goodselectionof j is relative, as it only concernsthe way in
which thefunctionsf andf [i] arecompared,not thefunctions
themselves.In the local criterion,an overestimatedj canlead
to an underestimationof the outliernessof the point: if we
acceptas coarsedescriptionof the data the one constructed
by taking into accountfrequenciesaffectedby the outlier, we
are masking its effect. Preciselyfor this reasonwe develop
in the next sectiona local-correctedcriterion, which tries to
representa trade-off betweenthe computationalcheapnessof
the local criterionand robustnessagainstunderestimationof j
of the global criterion.

VI . LOCAL CORRECTED CRITERION

We have noticedthat the main drawback of the local relax-
ationmethodis thepossibility of theeffect of outliersfiltering
down to thecoarsefrequenciessothata localapproximationto
thedatacannotrevealoutliers.Theobviousway to circumvent
thisproblemis to constructacoarselevel approximationwhich
is not influencedby the suspiciouspoint. Thus,we seekfor a

f̂ j,i :=
∑

λ∈Λ; |λ|≤j

d̂j,iλ ψλ (VI.1)

which minimizes
N

∑

`=1

(

z` − f̂ j,i(x`)
)2

. (VI.2)

The next step is like in the previous section:extend locally
the degreesof freedomandcomputefor this configurationan

approximationto the datawith andwithout the point (xi, zi).
That is, define

f̃ j,i :=
∑

λ∈Λ; |λ|≤j

d̂λψλ +
∑

λ∈Λ
[i]
j

d̃j,iλ ψλ. (VI.3)

wherethe vector d̃j,i = {d̃j,iλ }
λ∈Λ

[i]
j

is computedsuchthat it

minimizes
N

∑

`=1

(

z` − f̃ j,i(x`)
)2

(VI.4)

Likewise, we define

f̃ j,[i] :=
∑

λ∈Λ; |λ|≤j

d̂λψλ +
∑

λ∈Λ
[i]
j

d̃
j,[i]
λ ψλ, (VI.5)

wherethevectord̃j,[i] = {d̃
j,[i]
λ }

λ∈Λ
[i]
j

resultsfrom minimizing

∑

` 6=i

(

z` − f̃ j,[i](x`)
)2

. (VI.6)

Then, one can computethe local energies and statea merit
figure basedon this local correctedfitting of the data like in
the previous sections,i.e.,

ωlocal +(i) := log





E
Λ

[i]
j

α (f̃ j,i)

E
Λ

[i]
j

α (f̃ j,[i])



 . (VI.7)

In the plots in Figure10 approximations for the environment
of (x100, z100) from DataSet1 areshown. We have visualized
an exampleof the threemethodspresentedso far: the global,
the local and the local–correctedprocedure, from left to
right. In the two former the level jcut is fixed as 7. The
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Fig. 10. Comparisonof criteria for (x100, z100) with jcut = 7. Global
removal criterion at (x100, z100) (left), local criterion (middle) and local
correctedcriterion (right).

global approximationcriterion yields ωglobal(100) = 8.4.
The local approximationcriterion givesa muchsmallervalue
ωlocal(100) = 1.7. The reasoncan be inferred from the
centralplot of the figure: the dashed(red) line, which ideally
shouldnot beaffectedby theoutlier, is clearlyaffectedby the
presenceof it, asit is constructedstartingfrom a coarse–scale
approximationto thewholedataset, alsoincluding theoutlier.
We could formulate this effect by saying that the prescribed
jcut = 7 doesnot correspond to the actual penetrationdepth
of theoutlier. Onepossiblesolutioncouldbeto vary jcut. The
othersolution is the onepresentedin this section:theuseof an
outlier–freecoarse–scaleapproximation.Theresultis given in
theright plot in Figure10.Notethatthedashed(red)line does
not result in any undesirableinfluencefrom (x100, z100) and
succeedsto produceno artifactsin its environment.Theoutlier
coefficient arising from this criterion is ωlocal +(100) = 8.3.
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Obviously, we are re–introducingsomeamountof compu-
tationaloverhead,asnow f j,[i] hasto be computedfor every
i ∈ S. Thepoint is thatthis overheadis muchmoreaffordable,
asit affectsa reducednumberof coefficients.Theobservations
madein SectionIV aboutpoint removal proceduresfrom the
normalequationscannow be exploited.

VI I . ROBUST APPROXIMATION IN HIGHLY ENERGETIC

ENVIRONMENTS

In this sectionwe want to envisagesomeextremalcasesof
theproposedmethods.Theserefer to thevery definitionof the
outlier. The basic intuition of the outlier conceptis that it is
a point whosepresence in the datacreatesan outburst of the
local energy of the approximatingfunctions. This perspective
carries the obvious consequencethat outliers would not be
detectedwhich lie in domainareaswhere regular otherpoints
also producesimilar energy variations. Thus, some further
refinementmight benecessaryin theoutlier defining criterion.
Thereareseveral situationsin which this effect may occur:

• outliersembeddedin areasof rapid spacialvariability;
• simultaneouspresenceof other noisesources;
• a high rateof outlier contamination.

A. Presenceof Noise

We illustratethis with the following experiment.We addto
the data in Figure 1 somequantity of randomnoise,whose
amplitudeis controlledby theparameterσ. For differentnoise
amplitudesσ, we obtain, for instance,the data distributions
shown in Figure11. In the casesσ = 0.01 andσ = 0.05 the

noise amplitude: 0.01 noise amplitude: 0.05

noise amplitude: 0.1 noise amplitude: 0.2

Fig. 11. Noisy data.Parameterσ ∈ {0.01, 0.05, 0.1, 0.2} from left to right.

two outliers (x100, z100) and (x800, z800) areperfectlydistin-
guishablefrom the noisy background, andit is to be expected
that the criteria mentionedabove will give good estimations.
In the caseσ = 0.1 point (x100, z100) is embeddedinto the
noise.A correctandrobustoutlier finding criterionshouldnot
identify this point as an outlier, whereas(x800, z800) should
be marked. Finally, in the caseσ = 0.2 both original outliers
are not distinguishablefrom the point cloud, and an outlier
identificationwould not make sense.In correspondencewith
theabovedescriptionof roughfeaturesof thedata,weapplyin
Figure12 the global criterion definedin (IV.4) for the whole
bunch of points. We see that in the two extreme cases the
criteria works well: σ = 0.01 givesgoodresultsalthoughthe
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Fig. 12. Values of ωglobal for data sets in Figure 11; parameterσ ∈
{0.01, 0.05, 0.1, 0.2} from left to right.

discriminationof outliers is not so clear as in the previous
case.The results for the caseσ = 0.2 also fit the idea of
‘outlierness’ as the criterion doesnot recognizeany special
featurein the marked points,accordingto their inclusioninto
the noisy background.The intermediate casesalso work: at
σ = 0.05 both outliers are marked, whereasat σ = 0.1
point (x100, z100) is correctly ignored by the criterion, as it
is embeddedinto the surroundingnoise.Point (x800, z800) is
alsosuccessfullyprovided with a large valueof ωglobal.

However, in thesecasesthe discrimination of outliers is
not so clearasin the previous case:observe that a numberof
regulardatapointsalsoattaina largeoutliernesscriterion.This
is not a mayor problem:by its very definition,a falsedetection
amountsto eliminate a data point which carries redundant
information. As long as the remainingpoints still reproduce
thewholesetof significantdatafeatures,thelossof amoderate
numberof datapointscanbeconsideredadmissible.This issue
is revisited in the following sections.

In any case,the criterion canbe refinedin order to reduce
the loss of actual information. False detectionsaffect points
whoseremoval of the data yields a noticeabledecreaseof the
localenergy. As ourcriterionmeasuresthisdecreasein relation
to the original energy, in areaswhere this is very small, the
local reconfigurationof the wavelet spectrumafter removal of
a datapoint canhappento producea still lower local energy,
without this decreasebeingsignificant.We cancopewith this
situation in different ways. Firstly, we can impose stricter
thresholdingpolicies in the processing stepof SectionIII to
rule out pointslying in flatterareas.In thepresentcase,where
thedatais corruptedby high–frequency noise,oneshouldfilter
it with a classicalwaveletsmoothing procedure,aslong asone
hasa statistical modelfor this noise.A secondstrategy would
be to simply build the local energy factor into the criterion.

In Figure13, we seethe valuesof elocal(i) := E
Λ

[i]
jcut

α (f) for
eachpoint of thedatasetin the four level–of–noisescenarios.
If we multiply theglobalcriterionprofile with thelocal energy
profile we get theplotsof Figure14, wherethediscrimination
of outliersappearsmuchclearer than in Figure12.
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Fig. 13. elocal profile for data sets in Figure 11; parameterσ ∈
{0.01, 0.05, 0.1, 0.2} from left to right.
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Fig. 14. Profile of the productωglobal · elocal for datasetsin Figure 11;
parameterσ ∈ {0.01, 0.05, 0.1, 0.2} from left to right.

B. Large Numberof Outliers

Yet anotherpossiblesourceof problemsis the outlier den-
sity. Thecapability of themethodto disentangleoutliersfrom
surroundingsignallies in a characterizationof thelocal energy
of this surroundingsignal.If furtheroutliersarepresent in the
neighborhood,this characterizationfails, andconsequentlythe
outlier markingcriterion fails aswell.
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Fig. 15. Proximity of outliers:analysison (x100, z100). Local view behavior
of approximants(left), coefficientsof waveletsin Λ[100] (middle),coefficients
of waveletsin Λ[100] after removal of (x100, z100) (right).

We seean example in Figure 15. We add to the original
data a new outlier by imposing the value y102 = 1.1. This
representsan outlier in the immediateneighborhoodof the
originaloutlier (x100, z100). If wecomputenow theoutlierness
profile for each of thesepoints,we find that the ’outlierness
criterion’ of (x100, z100) in this dataset is 0.3, computed by
both global and local criteria. Recall that this point enforced

an ‘outliernesscoefficient’ ωglobal(100) = 7.2 when it was
isolated.The reasonfor the low valuesω can be read from
the reconstructions given in the figure: the suppressionof the
outlier (x100, z100) doesnot locally relaxtheapproximation,as
theremainingoutlier (x102, z102) still twiststheapproximation
toward this point. There is indeed some energy decay, as
onecandeducefrom the wavelet spectrumin the centraland
right plots of the sameFigure,but not as severe as when no
further outlier corrupts the background:compareFigure 15
with Figure 3. This meansthat the numberof outliers which
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Fig. 16. Proximity of outliers:analysison (x102, z102). Local behavior of
approximants(left), coefficients of wavelets in Λ[102] (middle), coefficients
of waveletsin Λ[102] after removal of (x102, z102) (right).

can be presentin a data set without corrupting it depends,
evidentlyaswell asonthedataset,on theirdistributionprofile,
as it is the proximity of outliers to each other which drives
the methodto fail.

We performthefollowing seriesof experiments:we corrupt
the original data by a fixed numberµ of outbursts for two
differentdesigns.In onedesign,the outliersareequidistantly
placed.In theotherone,outliersarerandomlydistributed.We
run thenour outlier finding procedurefor differentchoicesof
µ. In Tables1 through 4, we give thepercentagesof successful
outlier detectionandfalsedetectionfor differentchoicesof τ
anda differentnumberof outliers.

TABLE I

OUTLIER DETECTION PERCENTAGE IN EQUIDISTANT DESIGN.

τ / µ 20 50 100 200 300 500
0.1 100.0 100.0 98.0 42.0 4.3 0.2
0.2 100.0 100.0 98.0 38.5 1.0 0.2
0.3 100.0 100.0 97.0 17.5 0.3 0.0
0.4 100.0 100.0 96.0 3.0 0.0 0.0
0.5 100.0 96.0 96.0 0.5 0.0 0.0

TABLE II

OUTLIER DETECTION PERCENTAGE IN RANDOM DESIGN.

τ / µ 10 50 100 200 300 µ = 500
0.1 80.0 82.0 70.0 45.5 46.0 16.4
0.2 70.0 72.0 61.0 35.5 30.3 8.2
0.3 60.0 64.0 55.0 26.0 21.3 3.2
0.4 60.0 60.0 47.0 20.0 15.7 2.2
0.5 60.0 52.0 41.0 16.5 11.3 1.8

The results are quite expectable.In the equidistantcase
the outliers are locatedquite well when they are distanced
(low valuesof µ), up to the critical distance in which every
outlier suffers the influenceof two neighborsandthe method
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TABLE III

FALSE DETECTION PERCENTAGE IN EQUIDISTANT DESIGN.

τ / µ 10 50 100 200 300 500
0.1 0.3 1.2 0.0 2.7 18.0 0.0
0.2 0.0 0.0 0.0 0.9 11.7 0.0
0.3 0.0 0.0 0.0 0.0 6.8 0.0
0.4 0.0 0.0 0.0 0.0 5.5 0.0
0.5 0.0 0.0 0.0 0.0 4.3 0.0

TABLE IV

FALSE DETECTION PERCENTAGE IN RANDOM DESIGN.

τ / µ 20 50 100 200 300 500
0.1 0.7 1.4 1.5 3.1 3.4 6.4
0.2 0.0 0.2 0.6 1.0 1.4 3.0
0.3 0.0 0.1 0.3 0.3 0.5 1.4
0.4 0.0 0.1 0.2 0.2 0.3 0.7
0.5 0.0 0.1 0.1 0.1 0.1 0.3

collapsesabruptly. In the randomdesign,the outlier detection
rate is not so successfulfor a small concentrationof outliers.
This is causedby thenumberof outliers which resultto occur
closeto eachother, in spiteof a low total numberof outliers.
In compensation, the methodattainsa higher detectionrate
when the total numberof outliers is larger, as a numberof
outliersoccursisolatedfrom the others.

VI I I . ENERGY CRITERIA

The three outlier detectionmethodsexplained until now
are based in the constructionon a couple of functions (one
that seesthe whole action of the possible point, and one
that mollifies it) and its comparison.The reasonfor these
criteria to work well is provided by the RieszBasisproperty
of waveletswhich yields the characterizationof the norm of
a wide range of spacesin terms of the wavelet coefficients,
as exploited in definition (IV.3). In the criteria used so far
(global, local andlocal corrected)we comparedelocal(f) and
elocal(f

[i]), changingonly the definition of f [i]. We call these
direct criteria.

However, we could usethe sameargumentprovided by the
RieszBasispropertyandproposeto employ elocal(f−f

[i]) as
an outlier finding criteria. This is alsoa naturalchoice which
we call residual criterion. Somedifferencesto the previous
strategy are the following:

• Variable order of magnitudeof adequatethresholding
parameters.In direct methods the orderof magnitudeof
the parameter τ appearsto be quite intuitive: the energy
changemust be numerically noticeable.In the residual
methods,on the contrary, one usually finds appropriate
valuesfor τ , but they areobviously very sensitive to the
dataand the underlyingfunction.

• Different performance.If the addition of an outlier en-
forces a redistribution of local energy rather that an
increaseof it, see Section VII for situationsin which
this may occur, thedirectmethodswill fail to detect it, as
explainedabove,but residualmethodsstill have a chance.
Theprize for this is that themethodsaremoreexpensive
to compute.

Considerfor instancethe function on the left of Figure 17.
We add an overall backgroundnoise and 5% of outliers of
diverseamplitudeand randomlydistributed,as plotted in the
centerof thefigure.Our LSW method givesthereconstruction
at the right of thefigure. If we computeour full setof criteria
on our reconstruction,we get the successful detectionaswell
asthe wrong elimination percentagesgiven in Table5 for the
direct methodsand in Table 6 for the residualmethod.The
numbersconfirm our expectations,seethetwo reconstructions
given in Figure 18. Direct methodsfail to find the full set
of outliers. Residualmethodsfilter more outliers but cannot
avoid throwing away more datapoints and possibly relevant
information;comparethe reconstructionof the high energetic
featurelocatedatx = 0.8, which appearsmuchmoredamaged
in the right plot than in the left.
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Fig. 17. Data Set 2. Original function (left), irregular samplingwith noise
andoutliers (middle) andwavelet reconstruction(right).

TABLE V

PERFORMANCE OF DIRECT METHODS IN THE ANALYSIS OF THE

OUTLIER–CORRUPTED DATA FROM FIGURE 17.

% DetectedOutliers % EliminatedData

τ glob local local+
0.00 75.0 73.1 75.0
0.05 69.2 67.3 67.3
0.10 65.4 59.6 63.5
0.20 63.5 51.9 51.9
0.30 57.7 46.2 44.2
0.40 42.3 40.4 36.5

τ glob local local+
0.00 34.7 35.7 35.0
0.05 11.1 9.6 9.4
0.10 5.9 5.6 5.6
0.20 2.5 3.1 3.3
0.30 1.7 2.0 1.6
0.40 1.2 1.3 1.0

TABLE VI

PERFORMANCE OF RESIDUAL METHODS IN THE ANALYSIS OF THE

OUTLIER–CORRUPTED DATA FROM FIGURE 17.

% DetectedOutliers % EliminatedData

τ glob loc loc+
1.0e+05 100 100 100
5.0e+06 96.2 98.1 98.1
1.0e+07 92.3 90.4 92.3
1.5e+07 90.4 88.5 88.5
5.0e+07 76.9 65.4 69.2
1.0e+08 65.4 57.7 61.5
1.5e+08 57.7 46.2 50.0
2.0e+08 42.3 36.5 38.5

τ glob loc loc+
1.0e+05 75.7 76.9 77.5
5.0e+06 28.5 29.3 29.5
1.0e+06 22.4 23.1 23.6
5.0e+07 19.5 19.2 19.4
1.0e+07 10.6 10.5 10.8
5.0e+08 6.7 6.3 7.3
1.5e+08 5.3 4.7 5.5
2.0e+08 4.6 3.9 4.8

As a final remark, note that the use of f − f [i], that is,
residualmethods,would allow us to also use B–Splinesas
ansatzfunctions,as the measureof f − f [i] in L2 could be
reasonablyunderstoodas an indicator for outlier presence.
In contrast, direct methodsare only meaningfulin a wavelet
ansatz.
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Fig. 18. Reconstructionsof example Data Set 2, after removal of points
marked as outliers. Data cleanedby a direct method (left) and a residual
method(right).

TABLE VII

PERFORMANCE OF DIRECT CRITERIA IN THE ANALYSIS OF THE

OUTLIER–CORRUPTED DATA FROM FIGURE 19.

% DetectedOutliers % EliminatedData

τ glob loc loc+
0.000 90.0 90.0 90.0
0.025 90.0 90.0 90.0
0.050 85.0 85.0 85.0
0.075 85.0 85.0 85.0
0.100 75.0 80.0 80.0
0.125 75.0 75.0 80.0
0.150 70.0 75.0 80.0
0.175 70.0 70.0 70.0
0.200 65.0 70.0 70.0

τ glob loc loc+
0.000 34.2 35.1 34.5
0.025 1.2 2.0 2.0
0.050 0.5 0.4 0.4
0.075 0.3 0.2 0.2
0.100 0.1 0.1 0.1
0.125 0.1 0.1 0.1
0.150 0.1 0.0 0.0
0.175 0.0 0.0 0.0
0.200 0.0 0.0 0.0

IX. HIGHER SPATIAL DIMENSIONS

Our methodscan naturally be extended to higher dimen-
sions, choosingagain the semi-norm(IV.3) as the relevant
energy norm for the casep = r = 2. We seean example
of the procedurewith the data in Figure 19. In the plot on
the left we see a view of the well known Franke function.
We want to reconstructit from the 2000 scatteredrandomly
chosensamplingpoints given in the central plot. To the 20
pointsmarked in red we adda constantvalue,creatingin this
way a randomdistribution of outliers in the original data.We
see in the plot on the right a wavelet reconstructionfound
by our standardLSW method.Herewe canobserve how the
presenceof the outlierscreatesundesiredlocal oscillationsin
the surfacein the proximity of eachoutlier. The parameterq
steeringthecandidatesfor treegrowth in theadaptive wavelet
procedureis in the 2D examplesalways set to q = 100, and
jcut = 7.

Fig. 19. Outlier distribution in a scatteredsamplingwith 2000 pointsof the
Franke function (left). Samplinggeometrywith outliers (red points;middle).
Wavelet reconstructionwith 20 points (right).

To assert the performanceof the method for this data
set we compute the percentage of the outliers found and
falsedetectionsfor the several criteria we have discussed.In
Table 7 we see the resultsobtained by the direct methods.

TABLE VIII

PERFORMANCE OF RESIDUAL CRITERIA IN THE ANALYSIS OF THE

OUTLIER–CORRUPTED DATA FROM FIGURE 19.

% DetectedOutliers % EliminatedData

τ glob loc loc+
0.000 100.0 100.0 100.0
0.500 100.0 95.0 100.0
1.000 95.0 90.0 95.0
2.000 85.0 80.0 90.0
3.000 75.0 70.0 80.0
4.000 75.0 60.0 75.0
5.000 65.0 55.0 70.0

τ glob loc loc+
0.000 99.0 99.0 99.0
0.500 3.1 1.1 1.9
1.000 0.9 0.4 0.8
2.000 0.6 0.2 0.4
3.000 0.5 0.1 0.4
4.000 0.4 0.1 0.4
5.000 0.4 0.0 0.4

The resultsassertthe likelinessof the threecriteria.All three
of them give a successful rate of outlier finding with minor
lossesof non–corrupteddatapoints. Note, however, that the
methoddoesnot provide thecompletedetectionof outliers,as
the outlier interactioneffect described in SectionVII attains
to hide some of them. A second run of this method on
the data (after removal of the outliers detectedin the first
run) detectssuccessfullythe remainingoutliers.Accordingto
our argumentationin Section VIII, the residualmethodscan
disentanglebetterthis interaction and,consequently, detectall
the outliers in just one run. The price of this method is a
slightly higher rateof falsedetections.

A furtherexampleis provided in theanalysisof a geophys-
ical dataset [PR]. The set includes18634points orderedin
a squaregrid, plotted in the left of Figure 20. We add 1000
randomlydistributedoutliersto this data,yielding the dataon
the right of the sameFigure. In the left of Figure 21 we can
seetheperformanceof our algorithmwith onerun. A first run
eliminates75% of the outliers, while the dataeliminatedby
falsedetectiondoesnotappearto damagethereconstruction. A
secondrun of thealgorithm,that is, aniterationon thecleaned
data,offers the reconstructionon the right of the figure. As
we start from a situation where the density of outliers has
beenreduced,further outliersthat werepreviously masked by
neighboringoneshave now beensuccessfullydetected.

X. CONCLUSION

We have presentedin this article some robust regression
techniquesto handleoutlierswithin acoarse-to-finedatafitting
algorithmbasedon adaptive wavelets.Differentcriteriawhich
are basedon measuring the energy of reconstructionswith
andwithout the outlier basedon weightedwavelet coefficient
normshave beendevelopedandtestednumerically. Our adap-
tive waveletschemeyieldsa numericallyfastand reliableway
to detect outliers which can amount up to 5% of the total
amountof data.
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