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Rolust Regressionof ScatteredDatawith Adaptive
Spline—\\avelets

Daniel Castéio and AngelaKunoth

Abstract— A coarse-to-fine data fitting algorithm for irr egu-
larly spaceddata basedon boundary—adapted adaptive tensor
product semi—orthogonal spline—wavelets has been proposedin
[CK1]. This method has been extended in [CK2] to include
regularization in terms of Soboler and Besos norms. In this paper,
we develop within this least—squaes approach some statistical
robust estimators to handle outliers in the data. Our wavelet
schemeyields a numerically fast and reliable way to detect
outliers.

Index Terms— Scattered data, outlier detection, robust estima-
tion, adaptive wavelets, coarse—tofine algorithm.

I. INTRODUCTION

In [CK1], we have proposedan adaptve method of least
squaresdat fitting basedon wavelets which progresseon
a coarse—to—finebasis. The algorithm works on structured
grids and is, therefore,particularly usdul to implementus-
ing tensorproductsin more than one spatial dimensions.A
favourable feature of the schemeis that thereis no explicit
grid constructionlike whenusing, e.g.,data—dependerifrian-
gulations.In this sensethe datarepresentatioiis independent
of the original cloud of data points. Theseadwantageshave
madeapproachesn structuredgrids a well estabished,much
followed and universally applicable procedure,covering the
whole range from strictly mattematical analysisto applica-
tions in various areasof sciences, see, e.g., [GG], [GHJ],
[GH], [He], [HPMM], [HR], [LWS], [PS], [SHLS], [Sch], [Z].
Waveletsasbasisfunctionsfor the representationf scattered
data provide additional featuresin the problem formulation
regardingcomputationakfficiency aswell assparsenesof the
representationsuchas good conditioring and a naturalbuilt—
in potentialfor adaptvity (see,e.g.,[Ch] for an introduction
to basicwavelet theory).

We briefly wish to recall for further referenceour approach
in [CK1], [CK2] andsomepropertiesof the waveletswe em-
ploy here.Supposeve aregiven somesetX = {z;}i=1,... n,
consistingof irregularly spacedand pairwise disjoint points
x; € Q = [0,1]", n € {1,2,3}. For ead 4, we denote
by z; € IR the correspondingdata making up the set Z.
The problemof scatteed data fitting with regularization (of
Tikhonov type) canbe formulatedasfoll ows: Find a function
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f: Q@ — IR that approximateghe cloud of points (X, Z) in
a leastsquaressensethatis, f is to minimize the functional

N

T(F) = (2= @) +vlfII3- (1.1)
=1

HereY may be a Soboley spaceY = H® or a Besw space

with smoothnessndex «, andthe parameterr > 0 balances

the datafit with a userspecifiedregularity of the representa-

tion f. In particular, we wantto corstructan expansionof f

of the form

flz) = Zd,\du(l’), z €.

AEA

(1.2)

The setof basisfunctions{, }rca is a subsebf the wavelets
describedn [SDS]. They have the following properties:each
1y is a tensorproductof a certain boundary—adaptetinear
combinationof linear B—splines,denotedas (pre)wavelets or
shortly wavelets From a computationalpoint of view, this
is very adwantageoussince we can practically work with
piecavise polynomials.The index set A is a lacunaryset of
indices resulting from an adaptve coarse—to—fia procedure
explained belon. We denotethe infinite set of all possible
indicesby . Eachindex \ € I is of the form A = (j,k, e),
wherej =: |A| denotesthe level of resolutionor refinement
scale k the spatial location ande € {0,1}" the type of
waveletin more thanone spatialdimensionwhich is induced
by tensorproducts,seee.g.[D1], [DKU], [SDS]. Eachwavelet
1 hascompactsupportsatisfyingdiam (supp ¢5) ~ 2~
Therelationa ~ b alwaysis to meanthat « canbe estimated
from above andbelow by a constanimultiple of b independent
of all parameter®n which a or b may dependln view of the
finite domainandthe compactsupportof the basisfunctions,
thereis by constructiona coarsestefinementevel j, (jo = 1
in the caseof piecaviselinearwaveletsconsideredere. Basis
elementswith multi-index e = (0,0) only occur on level
jo- They are called scaling functionsand are tensorproducts
of piecawise linear B-Splines.For e # (0,0), ¥, represents
detail information of higherfrequencies.

Consequently f(x) in (1.2) can be split into a scaling
functionterm and a waveletterm,

Z dx ().

f() S daa(a) +
XEA, j>j50, €#(0,0)
(1.3)

AEA, j=j0, e=(0,0)
The complet collection of scalingfunctionsand wavelets
{¥» : A € II'} constitutesa Rieszbasisfor L, (£2). Moreover,
one has norm equivalencedor functionsin Sololev spaces
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H* = H*(Q) (or, even moregeneral,in Besw spacegDV])
in the rangea € [0, 3/2) of the form

[ Z Ay PalFra (o) ~ Z

A=(jke)el J=jo

2293 "|dj kel (1.4)
k,e

Since such smoothnes spacescan be characterizedn this
way, togetherwith their compactsupport wavelets suggest
themselesasa powerful analysistool for mary purposessee,
e.g.,[D1], [CDLL]. In addition,the waveletswe employ here
are semi—orthgonal with respectto L2(f2), i.e., for |A| # |u|
we alwayshave [, ¢¥x(x) ¢y (x)dx = 0.

Returningto the least squaresfitting problem (1.1), adap-
tation to the given datais achiesed in [CK1], [CK2] through
the constuction of anindex set A C I asfollows. Starting
on the coarsestevel j,, we chooseherethe setA ;, of indices
of all scalingfunctions and waveletson this level. An initial
fitting function 7o (z) := ZAeA]_O dy () is corstructedon
this index setby minimizing J(f7°) or, equivalently solving
the normal equations

(AR, An,, +VRj)d = AR, » (1.5)
iteratively using the conjucate gradient method. The matrix
Rj, is in the caseof Y = H* a diagonalmatrix of the form
Rj, = diag(22®7°). The observationmatrix An,, hasentries

(AAjO)i7)\ = 1/))\(Ii), 1=1,...,N, )‘EAjm (|6)

andz andd in (1.5) arevectorscomprisingthe right handside
data{z},=1... ~ andthe expansioncoeficients {d/\}AeA,-O-
The norm equivalerce (1.4) for o = 0 and the locality of
the ¢, revealsthat for e # (0,0), the absolutevalue of a
coeficient d, is a measureof the spatialvariability of f7° on
supp ¥ alargevalueof d is understed asanindicatorthat
furtherresolutionin this areaof the domainis desired.On the
other hand, in orderto keep control over the computational
complity, if dy is belov a certain userdefinedthreshold,
this coeficient is corsideredirrelevant and will be discarded
from the approximationin order not to spoil the compleity.
The index set is modified accordingly This motivates us
to constructin the next step a refined index set Aj; 1 by
includingthosechildrenof thewaveletsindexedby A ;, whose
coeficientsareabore someprescribedthresholdingvalueand
in whosesupporttherearemorethana fixed numberq of data
points. Note that this stratgly generats an approximationon
a tree as index structure.The procedureis repeateduntil at
somedyadichighestresolutionlevel J eitherall the computed
coeficients are smaller than the thresholdingvalue, or none
of the children whosesupportsshrinkswith eachrefinement
step containsenoughdata points in their sugport. Then the
algorithm stopsgrowing the tree. As the datasetis finite, the
algorithm finishesin finitely mary steps.The final index set
is thena lacunarytree index setA = A ;. We wish to point
out that the highestresolutionlevel .J is solely determinedby
the datato befitted. As to the choiceof ¢, one candetermine
conditionson the numberof pointsandtheir distribution which
guaranteeby the Theoremof Schoenbeg-Whitney that the
obsenation matrix A, ; hasfull rank[Ca]. A smallernumber
¢ (larger than the minimal) may generatea tree of greater

depthwhile a larger numberdoesthe opposite (We foundthat
the bestcompiomise betweengeneratingsufficient hierarcly
in the tree, quality of the approximationand performanceof
the algorithmis achieved for ¢ = 8 in 1D andg = 100 in 2D
whichwe have usedin all thesubsequemumericalexamples.)

Note that we have in the least squaresfunctional (I1.1) in
fact two parametersthe smoothnessndex « and the weight
parameter balancingthe approximationandthe smoothness
part,to adjustasbestaspossibleto the givendata.ln orderto
computethe weight parameterv, often a generalizedcross
validation techniqueis employed. This requiressolving an
additionalsystemof the type of the normalequatioss. In [Ca],
[CK2], we have further exploited the multilevel framewnork
provided by wavelets: we have introduceda multilevel version
of the crossvalidationprocedure This schemeurnsout to be
bothrelaively inexpensve from a computatimal point of view
aswell asadjuging nicely to smoothnessequirementaswell
asto localizationeffects.

It should be mentionedthat we always solve the least
squaresprodem using normal equationsasin (1.5). We have
obsered in our numerical experimentsthat the condition
numbersof A A, arerelatively moderatewhich is inherited
from the well-conditionirg of the waveletbasisrelative to the
Lo inner product. Togetherwith emplgying a nestel iteration
stratgy in the coase—to—finealgorithm, taking the solution
from the previous level asinitial guessfor the refinedindex
sets,we have documentedn the experimentsin [CK1] that
iteration numbersfor a conjugate gradient methal on the
normalequationsare very moderate Also we have found that
the approximationerror, comparingthe reconstructionwith
the exactvalue of J(f) definedin (1.1), is acceptabldCK2].
We have, in addition, comparedapproximationerrors of our
resultswith the normal equdions with approximationerrors
for aleastsquaresolutioncomputedusing@ R decomposition
of A, and we found only negligible differences,while the
iterationstook much lesstime for the normal equations.As
a third point worth mentioning, under these conditions, for
#A < N which is mostly the casehere,forming the normal
equationsentails in fact somedata compession effect, as a
large N only appearsasthe size of the sumsin the entriesof
(ATAN)a, = 3o a(2:)u(z;) andnotin the size of the
matrix of the normal equatians.

Multiscale data fitting schemeswhich may or may not
include a smoothingterm have beendiscussedn mary other
referencessee [CK2] for further details. Previously to the
studiespresentedhere, we have already gained some expe-
riencewith wavelet analysisof geoscientificdataon uniform
grids using the Fast Wavelet Transform (FWT) [GHK]. We
wish to stressthat for the scatterd data fitting procedure
consideredn this paper employing the FWT on uniform grids
would requirethe introductionof someatrtificial uniform grid
whichwould spoil the computationatompleity. All theabove
mentionedaspectsare describedin detail in the dissertation
[Ca] where alsothe employed software hasbeendocumented.

After describingthe essentialfeaturesof our algorithm,
this paperis devoted now to statisticalrobust estimatorsto
handleoutliers in the data. Again we will seethatwe cantake
adwantageof the multilevel structureof the wavelet setup.
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The remainderof this paperis structuredas follows. In
Section Il, we propose an LSW-spediic (Least Squares—
Wavelet) methodologyfor robust estimationof outliers. Its
basicsare describedin Sectionlll. SectionslV through VI
discussglobal andlocal outlier detectioncriteria. SectionVI|
is devotedto theissuehow to detecta large numberof outliers
in thedata.ThenSectionVIll discussestherformsof enegy
criteriato measureahe performanceof our algorithm.Finally,
we describein Section1X the extenson of our methodto
higher spatialdimensionsand concludewith its performance
on geoplysical datasets.

Il. AN LSW-SPECIFIC METHODOLOGY FOR ROBUST
DATA FITTING

We will develop anLSW (LeastSquares—\&elet) scheme
to detectoutliers which exploits the least squaes approach
describedabove. First, we have to discuss how an outlier can
be defined.We try to mimic the processby which the ‘human
eye’ tellsuswhatanoutier is: the preseceof anoutlier must
createa ‘cusp’ in the approximatingfunction. Thus,an outlier
is recognizedas an artifact which is extremelywell localized
in spaceand frequeng. This is one of the reasonswhy we
think that the wavelet frameavork is the method of choice
to detectoutliers. Other framavorks separatehe removal of
outliersand the wavelet analysisof the data.In contrasthere
we ratherwant to build the outlier detectioninto the wavelet
representatiorand take adwantageof it. As describedabove,
the result of the data fitting procedureis the construction
of a function f in the form (1.2) which repreentsthe data.
Thus, it seemsnaturalto transferthe problem of the outlier
definition from the point of view of the raw datato the point
of view of approximatingf. If the approximatingfunction
correctly catchegthe datafeaturesthe presenceof an outlier
must consequentlycreatea local jump in the approximating
function. Otherwise,if f is not affected by the outlier, the
schemedoesnot have to take the outlier into account.

This leadsto reformulatethe problemasfollows: howv can
onedefinethesejumpsin arigorousmathematicatvay which
is at the sametime easyto implement,and how can one
distinguishjumps createdby outliers and jumps containedin
thedata? Figurel illustratesfour areasof differentprototypes
of outliers and various types of data which we needto be
able to handle.In the first areafrom the left we find a point
which is ddfinitely classifiableas an outlier. This helpsus to
fix the criterion that a well-peforming methodshould mark
the correspondingoint (x1¢0, z100) asan outlier. The second
arearepresentacuspredly represergdin thedata.The points
in this areaare not to be marked as outliers. Moreover, they
are the representaties of a high frequeny phenomenorof
the data. The accidentalremoval of pointsin this areawould
eliminate significant information about this local structure.
Like in Area 1, the datain the third areapresentsa spatially
locatedhigh frequeng feature.In this casethe frequengy is
lower thanin Area 2, so that more points from the dataset
areinvolved in the representatiorof the local structure.This
could representa noncritical areaof the domain.No outlier
is present.A removal of some points on this areadoesnot

necessaril\feliminate significantinformation,asthe remaining
pointswould certainlyreproducehelocal featuresof the data.
The point (5o, 2300) in Area4 is an outlier embeddednto
a highly enelgetic zone.Thesekind of pointsposethe hardest
difficulties to outlier detectionalgorithms. On one hand, the
neighborhoocdtan maskthe effect of the outlier. On the other
hand, neighboringpoints carry significantinformation about
the local structureon the data,and falseremoval in this area
shouldbe avoided by ary means.

Fig. 1. SyntheticDataSet1 with N = 1000 datapoints shaving different
typesof outliers (left). Local detailsof the data(right).

The wavele representatiorof the data allows for an ex-
tremely practicalanswerto both questionsraisedabove:

« Concerningthe identification of jumps thereis a vast
amountof literature,seee.g.,[Co], [Hu], [LW].The basic
ideais that the presenceof a jump is reflectedby large
wavelet coeficients of the appraimation.

« Outliecausequmpscannotbe distinguishedrom data—
inherentjumps solely by inspectionof the wavelet rep-
resentationof the dat. In fact, one hasto inspectthe
point thenseles and analze how individual points in-
fluence the wavelet representationWe find below that
this taskcanbe easilyperformedafterhaving constructed
the LSW~approximationto the datadescribedbelow, as
all the information neededto perform this analysishas
alreadybeenprocessedn the daa structures.

Fig. 2. Adaptive reconstructionof syntheticData Set1 with #A = 190
wavelets (left) and resulting wavelet coeficients (right: on the y—axis the
resolutionlevels are shavn, the x—axis displaysthe spatial location of the
wavelet coeficients. Larger wavelet coeficients are darker in color). Highest
resolutionlevel in A is J = 8.
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I11. BAsICS OF THE L SW—APPROACH

Without treating the outliers in any specific way, our al-
gorithm producesthe resultsshavn in Figure 2. Clearly the
outliers produceundesiredartifactsin Areasl and4.

After performing the LSW-datafitting algorithm, we end
up with two objects:

1) the coeficients {d) },ca Of the constuctedapproxima-
tion f (1.2) asthe main productof the algorithmand

2) anefficient encodingof the obserationmatrix A = Aj,,
which was usedand updatedin the process.

The main computationaleffort lies in the constructionof A,
which implicitly containsa completeanalysisof the data.This
will be exploitedin our approachwhich we proposenext. We
separatehe outlier finding procedureinto threesteps:

I. Locatethe areasin which an outlier canbe prese As
explained previously, this can be performedby simpge
inspectionof the coeficients {dy} ca, asthe presace
of outliers must causelarge wavelet coeficients at high
levels. One evident possibility could be to choosea
thresholdingparaméer ¢ and a smallestrefinementievel
Jeus Which modelsthe expectedpenetratingdepthof the
outliers,andto identify a se of waveletsindices

Acjow ={r €A |dy| > e and|A| > jeur}.  (II11)

Il. Next, we could extract out of the original N pointsthose
embeddedn the supportof a wavelet, suchthat A €
Ac j..., andrecordtheir indicesin a setS:

ieS:<<= AelA.,, sothatz; € supp 5. (111.2)

This stepsenes only to reducethe numberof pointsin
outlie—affectedareas.

Ill. Testall the pointsin the areasidentifiedin the first two
steps.Basically a merit criterion w(i) is computed for
eachpointincludedin S, which senes asan ‘outlierness
indicator’. Pointswhosew is above a predefinedhreshold
7 arediscardedrom the dataset.

This is the decisive part of the algorithm,asthe concree
mathematicatranslationof the outlier concepthasto be
built into the computationof the merit criterion.

We have actuallyse ¢ = 0 in orderfor the pointwise criterion
in 1ll. to be most effective. Remarkson the choice of j..
are given at the end of SectionV. In the next sectionswe
describeandanalyzesereralwaysto constructmeaningfuland
computationallyfastoutliernessprofilesw(i) for i € S.

IV. GLOBAL REFITTING CRITERION

We startwith a set S of indicesof pointswhich have been
identified as possible outliers by the first two stepsof the
previous section,as they lie in the suppat of waveletswith
large coeficients. Considerone of thesepoints, (z;, z;) for
1 € S andtestif it is an outlier. As mentionedabove, in our
approachthe basisof this testwould be to measureo which
extentits presencealtersthe shapeof the approximation.This
goal canbe attainedin three steps:

1) Constructan approximatim to the whole dataset.

2) Constructan apprximation to the whole set of data
exceptthe point (z;, z;) to be checled. In orderto do
so,we use the sameconfiguraton of waveletswhich has
beenusedto computethe approximationto the whole
dataset. Thus,we compute

> (2= gl@)?.

00

= ag

min (IV.2)
g:ZAgA dxx
3) Comparethe behaior of f and fl/ in the ‘neighbok

hood’ of z;.

Elaborating this lag point, this can be done in a natural
way using the wavelet coeficients First of all, we needan
interpretationof the conceptof neighborhoodTo this end,we
definethe influencesetof a point (z;, z;) startingfrom level
j in theindex sa A asthe subsetof thoseA which includes
indicesof all waveletswhosesupportcontainz;. We denote
this neighborhoodas

A= e A, N2 ) meswppbn), (V)

or shortly Al whenthe subsript j is clearor irrelevant. Now,

we comparethe local behaior of f and fll. We definethe
local enegy of a function by meansof a weightedsummation
of asubsebf its wavelet codficientsasfollows: for a function
9= read¥a 0N Q andasetA’ C A, we define

E(/x\:p,r(g) — Z 9i(a+n/2—n/p) Z \dj x.0f?
j k,ecA’

IV.3)

This definitionreliesapparentlyon the normequialencerela-
tion betwveenBesw seminormandwaveletcoeficients,similar
to (1.4), compare[HKPT]. Although it may be interestingto
choosedifferent values of p and r, we have always taken
p = r = 2 in which case(IV.3) is equivalentto a Sobole
semi-normand we abbreiate EX' (g) := EX', ,(g). In view
of the norm equivalence(l.4), if (z;,z;) is indeedan outlier,
in the neighborhoodof z; the local enegy of f[i should
be much smallerthan the local enegy of f. This motivates
the following definition: we definethe merit profile of point

(x4, 2;) accordingto a global criterion as

lil
. Ea’ (f)
Welobal (7) = log —
Eo (f1)
With this definition, in view of Step (lll) from Sectionlll,
we found in our experimentsthat a typical thresholdingvalue
denotedby 7 which performs well should be in the order
of magnitudeof 1. Points (x;, z;) for which wgiopai(i) > 7
are then classifiedas an outlier, whereaspoints for which
Welobal (1) < T arenot. Thismeanghatin our modelwe expect
the presege of anoutlier to causea noticealte increaseof the
local enepy.

Revisiting the syntheticData Set 1 from Figure 1, we next
explorein detailhow this methodworksfor the differentareas
representedh the data.lf we take the outlier (z1¢9, z100) and
computethe global approximationsf and f[1%9 we obtain
thewaveletcoefficientsillustratedin Figure3. As expected ho

(IV.4)
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differences visible outsidetheredboxin the upperleft corner
of the wavelet coeficientsstartingat level 4. The presenceof
the outlier really doesact locally. We illustrate this in more

ﬁw'n |

HS
3

Fig. 3. Globalremoval criterionappliedto (z100, z100). Waveletcoeficients
of f (left) andof f[100 (right).

detailin Figure4. In thefirst plot we compae f (dashedine)
and f19 (solid line) in the neighborhoodof (z100, z100)-
The former obviously doesnot needto createthe jump that
tries to reproduce the point (2100, 2100). This is reflectedby
the coeficientsof the waveletsin A!'%%, asonecanseein the
following plotsof the samefigure: theenepgy contentof the set
A% s practically empty after subtracting(z19, z100) from
thedata.In computingthe enegy, a cuttinglevd j... = 3 was
chosen.The local measureof enelgy hasparametersy = 5.
Criterion (1V.4) would give a merit criterion of wgiona(100) =
7.02.

]
‘ X ’ ‘
-

Local Energy:  4e-01

Local Energy:  4e+06

Fig. 4. Global removal criterion on (z100, z100). Local view of f (dashed
line) and £11991 (solid line) (figure on the left). Coeficients of waveletsin
A1L00] for £ (middle) and f[100] (right).

The same computationfor the regular neighboring point
(z102, 2102) gives the coefiicient to measurethe ‘amount of
outlierness’aswyiona (102) = 0.0078, asits removal doesnot
critically vary the local enegy, seeFigure5.

H

Local Energy:  4e+06

g
i
I

/—\/\ 5 ‘
| |

Local Energy:  4e+06

Fig. 5. Global removal criterion appliedto (z192, z102). Local view of f
and £[192] (left). Coeficientsof waveletsin A[292] for f (middle)and f[102]

(right).

Furthermorethe point (x251, 2251) is locatedin the midde
of afine structurefeatureof the data.The removal of the point
damagedhut doesnot destry the structure, as can be seen
from Figure6. The similarity of the two approximationgjives
an outliernesscoeficient of wgiopa1 (251) = —0.27. Thus, the

algorithmwill markit asa regular point, preventing the loss

of information.

Local Energy:  5e+05 Local Energy:  1e+06

Fig. 6. Global removal criterion appliedto (z251, z251). Local view of f
and f; (left). Coeficientsof waveletsin Agsq for f (middle)and f25; (right).

Finally, we considerthe outlier (zgoo, zs00). AS it is located
in a highly enegetic ervironment, it is more complicated
to disentangleits effects from those of the datafeaures. In
Figure 7 one can see that the local enegy decy caused
by the subtractionof the point is not so dramatic as in
the caseof the outlier in a flat background,comparewith
Figure 4. Nevertheless,(xso0, zs00) attainsa merit value of
Welobal (800) = 1.2, so that the methodwould classify the
point correctly asan outlier.

] i

Local Energy:  26+06

Local Energy: _ 3e+07

Fig. 7. Global removal criterion appliedto (zsoo, 2800). Local view of f
and f; (left). Coeficientsof waveletsin Ags; for f (middle)and f251 (right).

Removal of Points in Normal Equations. Despite these
convincing resuls, the proposedstrategy hasan obviousdraw-
back:it requiresthe computaion of fli for every suspicious
point (x;, z;). This amountsto constructand solve a different
setof normalequationgor every i. Fortunatly, the structue
of the problemallows for somepossiblesimplificaions if one
considerghe linear systemwhich is to be solved for the data
fitting procedure.Abbreviating the normal equationsof the
original problem(1.5) by Md = b andthe normalequationsf
the problemwith the point (z;, z;) removed by Mgl = plil|
the relation betweenthe two systemscan be expressedas
MU = M — ala;, andbl) = b — af 2, where a; denotes
the i—th row of the obsenation matrix A.

This structuremakes the constructionof the nev normal
equationsa trivial task and allows for two possibleways to
simplify the solution process

1) Under our assumgion of an outlier having only an
effect local in scaleand space,one expectsd to be a
good approximation to dll. Thus, an iterative method
needsonly few iterationsto find dl} having d asinitial
guess.This is particularly so if the matrix M is well—
conditionedasit is in our caseherewhenworking with
our boundary—adaptespline—vavelets[CK1].

2) Theinvers of Ml is available by meansof the inverse
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of M, usingthe Sherman—Morrign identity

N[‘lafaiM_l

1-— a,»M_laiT ’
Of course,a direct applicationof this formula is not
advisablein general,as it requiresthe inversion and
storageof theinverseof M (or of its QR factorization).
In view of the spasity structureof M, this resultsin a
computationacomplexity of order O((#A)? log(#A)).
In caseswherewe cantake full advantageof adaptvity,
namely when a large amountof data can be described
by only a small numberof wavelets,i.e., #A < N,
the computational compleity would thereforestill be
relatively small.

We exploit this laterin SectionVI wherewe usethe Sherman—

Morrison formula on the normal equations.

(M= = (M —ala)) ' =M1+

V. LocAL CRITERION

The method descibed in the previous section seemsto
give a very reliable characterizatiorof outliers. It attainshigh
outlier detectionratesin all our experiments.The dravbacks
of this method are thereforenot of conceptualbut merely
of computationalnature: it can involve severe costs when
recomputinga new approximatingunction f!% for every point
(x4, 2;) to be checled.

In this section we presenta modification of the above
algorithmto speedup the computationsvhich usesthe semi—
orthogonalityof the wavelet bass.

Recallthat the commongroundfor outlier detectionis the
comparisorof f and fl%l. This comparisonis donelocally in
space,selectingwavelets located around the location of the
outlier, and frequeng, picking the higher scales.According
to this implicit characterizationof outliers basedon local
featuresthe ideanow is to replacethe comparisonof f and
£l with a comparisorof functionswhich approximatef and
£l locally. To this end we consideran approximationof
the data up to some coarselevel j < J, where J is the
maximal resolution level includedin the original set A, by
simplerestrictingthe origind function f to a maximallevel j

fle= Y da (V.1)

AEA; [N[<d

We constructnow local approximationsto f and fl) in the
neighborhoodof z; by keeping the coeficients of f up to
level j andaddingonly local waveletgo describehigherdetail
features Theselocal waveletsarethe oneswhich we included
in the set A‘[;] definedin (1V.2). The methodof the previous
sectionis now mimicked by building two approximationspne
that takes into accountthe point z;, f7*, and one that does
not, f7:l. Thatis, we define

= ) daa+ Y B

AEA; [AN<j AeAld
J

(V.2)

wherethe vector /' = {d}" .1 is computedsuchthat

J

}AeA

(V.3)

N y 2
> (20— 1 (we)

(=1

attainsits minimum.Notethatthelocality of waveletsincluded
in AE?] forcesmosttermsin the summaion to be zero,andthe
non zero elementsare directly accessiblefrom the sparsity
pattern in which we have coded the obseration matrix.
Likewise, we define

= 3

AEA; [A[<j

dyr+ Y &,

(1
Al

(V.4)

wherethe vector d/:l] = {d/!" }renti is the LSWHit of

S (s pm0)’

00

Consequentlywe can define a merit criterion basedon this
local criterion as

(V.5)

(il
Ea’ (f7)
EQL](fj,[i])
One can interpret this process as ‘freezing’ f? and
‘gluing’ onto it a local approxmation to the set
{(zi,z — f/(xi)) }i=1,....n. The implicit assumptionbehind
this is that ‘freezing’ and ‘gluing’ will maintin a similar
spectrumof local enegies which is justified by our use of
a wavelet basis. The semi—orthogonalityproperty allows us
to operatethis ‘level sugery’ and therebytreating different
scalesseparately

Wiocal (1) 1= log (v.6)

— global

o | — focal
-~ globaliremoved
---_localiremoved

Fig. 8. G!obal and local reconstructionsnear (zsoo, z800). Local view
of f and f3:800 (left) and removal of (xso0,2800) in global and local
approximations.

Let us illustrate this procedurein Figure 8. On the left,
the black line representsthe global approximationto the
data f and the red line representghe local approximation
3800 to the data. We obsenre that the degrees of freedom
usedin the constructionof f7¢ seemsto perfectly fit our
purposesas the local approximationnearthe outlier artifact
is nearly indistinguishablefrom the global approximation.
Obviously this diverges from it outsideof this narrov area.
On the right, we seein a close—upthe different functions
near the point. Solid lines include information of the point
and dashedines do not. We obsere that global (black) and
local (red) approximationsyield similar results (dashedand
solid lines diverge nearthe outlier and approacheachother
away from it). In addition, as one could expectin view of
the plot, the two ‘outlierness criteria’ are correspondingly
similar, wgioba1(800) = 1.2 and wieea1(800) = 1.7. These
coeficients reflect a decreaseof more than one order of
magnitudein the respectie local enegies by removal of
the point (zsg0, 2s00). The meit criterion for the regular
neighboringpoint (zsoz, 2s02) IS Weloba1 (802) = —0.15 by the
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global criterion (1V.4) and wioc.1(802) = —0.13 by the local
criterion (V.6). This indicatesthat the presenceof this point
causegust a minor readjustmat of the local reconstructiorin
Figure 9, amountingonly to a slight local enegy variation.

— global
— local

--- globaliremoved
--- localiremoved

Fig. 9. Global and local reconstructionsear (zso2, zs02). Local view
of f and 3892 (left) and remoal of (2802, 2s02) in global and local
approximations.

This procedureobviously reducesthe computationcosts
of the global method,as the numberof degreesof freedom
involved in the computatim of f7* and f7:[1 is just #Ag’], a
fraction of the total numberof wavelets#A.

A further property implicit in this procedureis that the
coarsescaleprojection {7 is in factnot affectedby the outlier.
This meansthat the effect of every outlier is restrictedto
dyadic levels higher than j. This makes the selectionof j
an importantissue.A too small value j resultsin including
in the local configurationAB’] waveletsof low frequeng that
do not notice the effect of the outlier. If the coeficients of
thesewavelets are much larger than the coeficients of the
high frequenciesthey may mask the effect of the removal
of the outlier. In the global algorithm, the importanceof a
goodselectionof j is relative, asit only concernghe way in
which thefunctionsf and f[?! arecomparednot the functions
themseles.In thelocal criterion, an overestimated canlead
to an underestimatiorof the outlierressof the point: if we

acceptas coarsedescriptionof the datathe one constructed |

by taking into accountfrequenciesaffectedby the outlier, we
are masking its effect. Preciselyfor this reasonwe develop
in the next sectiona local-correctedcriterion, which tries to
represent trade-of betweenthe computationakcheapnessf
the local criterion and robustnessagainstunderestimatiorof ;
of the global criterion.

VI. LocAL CORRECTED CRITERION

We have noticedthat the main drawback of the local relax-
ation methodis the possilility of the effect of outliersfiltering
down to the coarsefrequertiessothatalocal approximatiorto
thedatacannotreveal outliers. The obviousway to circumwent
this problemis to constructa coarsdevel approxinationwhich
is not influencedby the suspiciougpoint. Thus,we seekfor a

= 3 ds (VI.1)
AEA; M)
which minimizes
N o 9
> (2= o) (V1.2)
=1

The next stepis like in the previous section: extend locally
the degreesof freedomand computefor this configurationan

approximationto the datawith andwithout the point (z;, 2;).
Thatis, define

= 30 dan+ Y s (VI.3)
AEA A< AeAl
wherethe vector @/t = {J&’i}AeAm is computedsuchthat it

minimizes

N 2
3 (ze - fﬂ'ai(mg)) (V1.4)
=1
Likewise, we define
Plil= 3" dan+ > &My, (VI1.5)
AEA; A< YIS
wherethevectord’l’l = {Ji’m}AeAy] resultsfrom minimizing
- 2
> (20— @) (V1.6)
(£

Then, one can computethe local enegies and statea merit
figure basedon this local correctedfitting of the data like in
the previous sectionsj.e.,

Al
] Ei 7,0
wlocal«k(l) = 108; % (Vl?)
B (fri)

In the plots in Figure 10 approximatbns for the environment
of (2100, 2100) from DataSet1 areshavn. We have visualized
an exampleof the threemethodspresentedso far: the global,
the locd and the local-correctedprocedue, from left to
right. In the two former the level j..; is fixed as 7. The

Fig. 10. Comparisonof criteria for (100, z100) With jecut = 7. Global
removal criterion at (z100, z100) (left), local criterion (middle) and local
correctedcriterion (right).

global approximation criterion yields wgiobai (100) = 8.4.
The local approximationcriterion givesa much smallervalue
Wioeal (100) = 1.7. The reasoncan be inferred from the
centralplot of the figure: the dashedred) line, which ideally
shouldnot be affectedby the outlier, is clearly affectedby the
presencef it, asit is constructedstartingfrom a coarse—scale
approximatiorto the wholedatase, alsoincluding the outlier.
We could formulate this effect by saying that the prescribed
jeuws = 7 doesnot correspad to the actual penetrationdepth
of the outlier. Onepossiblesolutioncouldbeto vary j..;. The
othersolutionis the onepresetedin this section:the useof an
outliefree coarse—sale approximationThe resultis givenin
theright plot in Figure10. Note thatthe dashedred)line does
not resultin ary undesirableénfluencefrom (z10, 2100) and
succeed$o produceno artifactsin its ervironment. The outlier
coeficient arising from this criterion is wioca) +(100) = 8.3.
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Obviously, we are re—introducingsomeamountof compu-
tational overhead,asnow f7[1 hasto be computedfor every
i € S. Thepointis thatthis overheads muchmoreaffordable,
asit affectsareducechumberof coeficients.The obsenrations
madein SectionlV aboutpoint removal proceduregrom the
normal equationscan now be exploited.

VIl. ROBUST APPROXIMATION IN HIGHLY ENERGETIC
ENVIRONMENTS

In this sectionwe wantto envisagesomeextremal caseof
the proposednethodsThesereferto the very definition of the
outlier. The basicintuition of the outlier conceptis thatit is
a point whosepres@ecein the datacreatesan outhurst of the
local enegy of the approximatingfunctions. This perspectie
carriesthe obvious consequencehat outliers would not be
detectedwhich lie in domainareaswhere regular otherpoints
also produce similar enegy variations. Thus, some further
refinemenimight be necessaryn the outlier defining criterion.
Thereare several situationsin which this effect may occur:

« outliersembeddedn areasof rapid spacialvariability;
« simultaneougpresenceof other noisesources;
« ahigh rate of outlier contanination.

A. Presenceof Noise

We illustratethis with the following experiment.We addto
the datain Figure 1 somequantity of randomnoise, whose
amplitudeis controlledby the parameter. For differentnoise
amplitudeso, we obtain, for instance,the data distributions
shawvn in Figure 11. In the casess = 0.01 ando = 0.05 the

noise amplitude: 0.05

noise amplitude: 0.01

»“\“A‘.

noise amplitude: 0.2

noise amplitude: 0.1

Fig. 11. Noisy data.Parameter € {0.01,0.05,0.1,0.2} from left to right.

two outliers (z100, z100) and (zgoo, zs00) are perfectly distin-
guishablefrom the noisy backgroundandit is to be expected

that the criteria mentionedabove will give good estimations.

In the casec = 0.1 point (x100, 2100) iS emikeddedinto the
noise.A correctandrobustoutlier finding criterion shouldnot
identify this point as an outlier, whereas(xsgo, z300) should
be marked. Finally, in the cases = 0.2 both original outliers
are not distinguishablefrom the point cloud, and an outlier
identificationwould not make senseln correspondencwith
theabove descriptionof roughfeaturesof the data,we applyin
Figure 12 the global criterion definedin (1V.4) for the whole
bunch of points. We seethat in the two extreme casesthe
criteriaworks well: o = 0.01 givesgood resultsalthoughthe

noise amplitude: 0.05

noise amplitude: 0.01

Global Criterion
noise amplitude: 0.2

Global Criterion
noise amplitude: 0.1

Global Criterion Global Criterion

Fig. 12. Valuesof wgional for datasetsin Figure 11; parametero €
{0.01,0.05,0.1,0.2} from left to right.

discrimination of outliersis not so clear as in the previous
case.The resultsfor the casec = 0.2 alsofit the idea of
‘outlierness’ as the criterion doesnot recognizeary special
featurein the marked points,accordingto their inclusioninto
the noisy background.The intermedate casesalso work: at
o = 0.05 both outliers are marked, whereasat ¢ = 0.1
point (x100, 2100) IS correctly ignored by the criterion, as it
is embeddednto the surroundingnoise.Point (xggo, 2800) IS
also successfullyprovided with a large value of wgiobal-

However, in thesecasesthe discrimination of outliers is
not so clearasin the previous case:obsene that a numberof
regulardatapointsalsoattaina large outliernes<riterion. This
is not amaya problem:by its very definition,a falsedetection
amountsto eliminate a data point which carries redundant
information. As long as the remainingpoints still reproduce
thewholesetof significantdatafeaturesthelossof amoderate
numberof datapointscanbe considerec&dmissible Thisissue
is revisited in the following sections.

In any case,the criterion can be refinedin orderto reduce
the loss of actualinformation. False detectionsaffect points
whoseremoval of the data yields a noticeabledecreasef the
localenepy. As our criterionmeasureshis decreasén relation
to the original enegy, in areaswherethis is very small, the
local reconfiguratiorof the wavelet spectrumafter removal of
a datapoint canhappento producea still lower local enegy,
without this decreasédeingsignificant.We cancopewith this
situation in different ways. Firstly, we can impose stricter
thresholdingpoliciesin the procesing step of Sectionlll to
rule out pointslying in flatterareasln the presentase where
thedatais corruptedby high—frequeng noise,one shouldfilter
it with a classicalwaveletsmoothihg procedureaslongasone
hasa statstical modelfor this noise.A secondstratey would
be to simply build the local enegy factor into the criterion.

[i]
In Figure 13, we seethe valuesof ejoca(i) := E([,\?C“t (f) for
eachpoint of the datasetin the four level-of-noisescenarios.
If we multiply the globalcriterion profile with the local enegy
profile we getthe plots of Figure 14, wherethe discrimination
of outliers appearanuch cleaer thanin Figure 12.
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noise amplitude: 0.01 noise amplitude: 0.05

an ‘outliernesscoeficient’ wyoba1(100) = 7.2 when it was
isolated. The reasonfor the low valuesw can be read from
the reconstructioa given in the figure: the suppressiorof the
outlier (z100, 2100) doesnotlocally relaxtheapproximationas
Q. : theremainingoutlier (z102, z102) Still twiststheapproximation
o Ee S R tregy toward this point. There is indeed some enegy decay as
rotse amplude: 0 notse amplude: 02 one can deducefrom the wavelet spectrumin the centraland
right plots of the sameFigure, but not as severe aswhen no
further outlier corruptsthe background:compareFigure 15
with Figure 3. This meansthat the numberof outliers which

Local Energy - Local Energy

Fig. 13. elocal Profile for data sets in Figure 11; parameteroc €
{0.01,0.05,0.1,0.2} from left to right.

Local Energy x global criterion Local Energy x global criterion
Fig. 16. Proximity of outliers: analysison (x102, z102). Local behaior of
approximantg(left), coeficients of waveletsin Al192] (middle), coeficients
of waveletsin A[102] after remaval of (2102, z102) (right).
noise amplitude: 0.01 noise amplitude: 0.05
Local Energy x global criterion Local Energy x global criterion can be presentin a data set W|th0ut Corrupting |t depends,

evidently aswell asonthedataset,on their distribution profile,
asit is the proximity of outliersto each other which drives
the methodto fail.

We performthe following seriesof experimentswe corrupt
the original data by a fixed number . of outbursts for two
differentdesigns.n onedesign,the outliers are equidistantly
Fig. 14. Profile of the productwgional - €l0cal for datasetsin Figure11;  placed.In the other one,outliersarerandomlydistributed. We
parameter € {0.01,0.05,0.1,0.2} from left to right. run thenour outlier finding procedureor differentchoicesof

1. In Tablesl through 4, we give the percentagesf successful
) outlier detectionandfalsedetectionfor differentchoicesof
B. Large Numberof Outliers anda differentnumberof outliers.

Yet anotherpossiblesourceof problemsis the outlier den-
sity. The capabiity of the methodto disentangleoutliersfrom
surroundingsignalliesin a characterizationf thelocal enegy
of this surroundingsignal.If furtheroutliersarepresenin the
neighborhoodthis characterizatiofiails, andconsequentlyhe TO/ 1“ 138 5 188 5 égoo 2(2]% ?fg %0(2)
outlier marking criterion fails aswell. 02 1 1000 10001 9801 385 1.0 | 02

0.3 100.0 | 100.0| 97.0 | 175| 0.3 | 0.0
0.4 100.0 | 100.0| 96.0 | 3.0 | 0.0 | 0.0
0.5 100.0 | 96.0 | 96.0 | 05 | 0.0 | 0.0

noise amplitude: 0.1 noise amplitude: 0.2

TABLE |
OUTLIER DETECTION PERCENTAGE IN EQUIDISTANT DESIGN.

§ A §
5 be 5|
4 .

TABLE I
OUTLIER DETECTION PERCENTAGE IN RANDOM DESIGN.

Fig. 15. Proximity of outliers:analysison (x100, 2100?' Local view beharior L 10 50 100 | 200 | 300 | p =500
of approximant Ieft?,coeficientsofwaveletsin Al00] (middle),coeficients 0.1 80.0 | 82.0 | 70.0 | 455 ] 46.0 16.4
of waveletsin Al1%0 after removal of (2100, 2100) (right). 0.2 70.0 | 72.0 ] 61.0 | 355 [ 30.3 8.2

0.3 60.0 | 64.0 | 55.0 | 26.0 | 21.3 3.2

- - 0.4 | 60.0 | 60.0 | 47.0 [ 20.0 [ 157 2.2
We seean examplein Figure 15. We add to the original 05 17600 520 210 165 | 11.3 18

dataa new outlier by imposing the value 9o = 1.1. This
representsan outlier in the immediate neighborhoodof the
original outlier (x100, 2100)- If we computenow theoutlierness  The results are quite expectable.In the equidistantcase
profile for each of thesepoints, we find that the 'outlierness the outliers are located quite well when they are distanced
criterion’ of (z100, 2100) in this datasetis 0.3, compute by (low valuesof u), up to the critical distarce in which every
both global and local criteria. Recall that this point enforced outlier suffers the influenceof two neighborsandthe method
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TABLE 1lI
FALSE DETECTION PERCENTAGE IN EQUIDISTANT DESIGN.

T/ 10 | 50 | 100 | 200 | 300 | 500
0.1 03] 12| 00 | 27 | 180 | 0.0
0.2 00| 00| 00| 09 | 11.7 | 0.0
0.3 00| 00| 00| 00| 6.8 | 0.0
0.4 00| 00| 00| 0.0 | 55 | 0.0
0.5 00| 00| 00| 00| 43 | 0.0

TABLE IV

FALSE DETECTION PERCENTAGE IN RANDOM DESIGN.

Tl p 20 | 50 | 100 | 200 | 300 | 500
0.1 07 14| 15| 31| 34| 64
0.2 00 02| 06| 10| 14 | 3.0
0.3 00/ 01| 03] 03] 05 ] 14
0.4 00 01| 02 ] 02| 03| 0.7
0.5 00|01] 01] 01 ] 01 ] 03

collapsesabruptly In the randomdesign,the outlier detection
rateis not so successfufor a small concentratiorof outliers.
This is causeddy the numberof outliers which resultto occur
closeto eachother in spite of a low total numberof outliers.
In compenation, the methodattainsa higher detectionrate
when the total numberof outliersis larger, as a numberof

outliers occursisolatedfrom the others.

VIIlI. ENERGY CRITERIA

The three outlier detection methodsexplained until now
are basel in the constructionon a couple of functions (one
that seesthe whole action of the possible point, and one
that mollifies it) and its comparison.The reasonfor these
criteriato work well is provided by the RieszBasis property
of waveletswhich yields the characterizatiorof the norm of
a wide rarge of spacesn termsof the wavelet coeficients,
as exploited in definition (IV.3). In the criteria usedso far
(global, locd andlocal corrected)we comparece;oc.i(f) and
elocal (f1), changingonly the definition of f(l. We cdl these
direct criteria.

However, we could usethe sameargumentprovided by the
RieszBasispropertyandproposeto employ ejocal(f — f1¥) as
an outlier finding criteria. This is alsoa naturalchoice which
we call residual criterion. Some differencesto the previous
stratgyy are the following:

« Variable order of magnitudeof adequatethresholding
parametersln direct methods the order of magnitudeof
the paramete r appeardo be quite intuitive: the enegy
changemust be numerically noticeable.In the residual
methods,on the contrary one usually finds appropriate
valuesfor 7, but they are olbviously very sensitie to the
dataandthe underlyingfunction.

« Different performancelf the addition of an outlier en-
forces a redistritution of local enegy rather that an
increaseof it, see Sectim VII for situationsin which
this may occur the directmethodswill fail to detect it, as
explainedabore, but residualmethodsstill have a chance.
The prizefor this is thatthe methodsare more expensve
to compute.
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Considerfor instancethe function on the left of Figure 17.
We add an overall backgroundnoise and 5% of outliers of
diverseamplitudeand randomlydistributed, as plotted in the
centerof thefigure. Our LSW methal givesthe reconstruction
at the right of thefigure. If we computeour full setof criteria
on our reconstuction, we getthe succasful detectionaswell
asthe wrong elimination percentagegivenin Table5 for the
direct methodsand in Table 6 for the residualmethod.The
numbersconfirm our expectationsseethe two reconstructions
given in Figure 18. Direct methodsfail to find the full set
of outliers. Residualmethodsfilter more outliers but cannot
avoid throwing away more data points and possibly relevant
information; comparethe reconstructiorof the high enegetic
featurelocatedat = 0.8, which appearsnuchmoredamaged
in the right plot thanin the left.

Data Distribution Wavelet reconstruction

Fig. 17. DataSet2. Original function (left), irregular samplingwith noise
and outliers (middle) and wavelet reconstructior(right).

TABLE V
PERFORMANCE OF DIRECT METHODS IN THE ANALY SIS OF THE
OUTLIER—CORRUPTED DATA FROM FIGURE 17.

% DetectedOutliers % Eliminated Data

T glob | local | local+ T glob | local | local+
0.00 || 75.0 ] 731 | 75.0 0.00 || 34.7] 357 ] 35.0
0.05 || 69.2 | 67.3 | 67.3 0.05 || 111 | 9.6 9.4
0.10 || 65.4 | 59.6 | 63.5 0.10 5.9 5.6 5.6
0.20 || 635 | 519 | 51.9 0.20 2.5 3.1 3.3
0.30 || 57.7 | 46.2 | 442 0.30 1.7 2.0 1.6
0.40 || 42.3 | 404 | 36.5 0.40 12 1.3 1.0

TABLE VI

PERFORMANCE OF RESIDUAL METHODS IN THE ANALY SIS OF THE
OUTLIER—CORRUPTED DATA FROM FIGURE 17.

% DetectedOutliers % Eliminated Data

T glob | loc | loc+ T glob | loc | loc+
1.0e+05| 100 | 100 | 100 1.0e+05| 75.7 | 76.9 | 77.5
5.0e+06 | 96.2 | 98.1 | 98.1 5.0e+06 | 28,5 | 29.3 | 29.5
1.0e+07 | 92.3 | 90.4 | 92.3 1.0e+06 | 22.4 | 23.1 | 23.6
1.5e+07 | 90.4 | 88.5 | 88.5 5.0e+07| 19.5 | 19.2 | 194
5.0e+07| 76.9 | 65.4 | 69.2 1.0e+07| 10.6 | 10.5 | 10.8
1.0e+08 | 65.4 | 57.7 | 61.5 5.0e+08| 6.7 6.3 7.3
1.5e+08 | 57.7 | 46.2 | 50.0 1.5e+08| 5.3 4.7 5.5
2.0e+08| 42.3 | 36.5 | 38.5 2.0e+08| 4.6 3.9 4.8

As a final remark, note that the use of f — fll, thatis,
residual methods,would allow us to also use B-Splinesas
ansatzfunctions, as the measureof f — fl in L, could be
reasonablyunderstoodas an indicator for outlier presence.
In contrast direct methodsare only meaningfulin a wavelet
ansatz.
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Direct method reconstruction Residual method reconstruction

Fig. 18. Reconstruction®f example Data Set 2, after removal of points
marked as outliers. Data cleanedby a direct method (left) and a residual
method(right).

TABLE VII
PERFORMANCE OF DIRECT CRITERIA IN THE ANALY SIS OF THE
OUTLIER—CORRUPTED DATA FROM FIGURE 19.

% DetectedOutliers % Eliminated Data

T glob | loc | loc+ T glob | loc | loc+
0.000 | 90.0 [ 90.0 | 90.0 0.000 | 34.2 | 351 | 345
0.025| 90.0 | 90.0 | 90.0 0.025| 1.2 2.0 2.0
0.050 | 85.0 | 85.0 | 85.0 0.050 | 0.5 0.4 0.4
0.075| 85.0 | 85.0 | 85.0 0.075| 0.3 0.2 0.2
0.100 | 75.0 | 80.0 | 80.0 0.100 | 0.1 0.1 0.1
0.125| 75.0 | 75.0 | 80.0 0.125| 0.1 0.1 0.1
0.150 | 70.0 | 75.0 | 80.0 0.150 | 0.1 0.0 0.0
0.175| 70.0 | 70.0 | 70.0 0.175| 0.0 0.0 0.0
0.200 | 65.0 | 70.0 | 70.0 0.200 | 0.0 0.0 0.0

IX. HIGHER SPATIAL DIMENSIONS

Our methodscan naturally be extenced to higher dimen-
sions, choosingagain the semi-norm(1V.3) as the relevant
enegy norm for the casep = r = 2. We seean example
of the procedurewith the datain Figure 19. In the plot on
the left we see a view of the well known Franle function.
We want to reconstructit from the 2000 scatteredrandomly
chosensamplingpoints given in the central plot. To the 20
pointsmarkedin red we add a constantvalue, creatingin this
way a randomdistribution of outliersin the original data.We
seein the plot on the right a wavelet reconstructionfound
by our standardLSW method.Here we canobsene how the
presenceof the outliers createsundesiredocal oscillationsin
the surfacein the proximity of eachoutlier. The parameter
steeringthe candidategor treegrowth in the adaptie wavelet
procedureis in the 2D examplesalways setto ¢ = 100, and
jcut =1.

N
gAY
R

Fig. 19. Outlier distribution in a scatteredsamplingwith 2000 pointsof the
Franle function (left). Samplinggeometrywith outliers (red points; middle).
Wavelet reconstructiorwith 20 points (right).

To assertthe performanceof the method for this data
set we compute the percentag of the outliers found and
falsedetectionsfor the several criteria we have discussedIin
Table 7 we seethe results obtaired by the direct methods.
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TABLE VI
PERFORMANCE OF RESIDUAL CRITERIA IN THE ANALY SIS OF THE
OUTLIER—CORRUPTED DATA FROM FIGURE 19.

% DetectedOutliers % Eliminated Data

T glob loc loc+ T glob | loc | loc+
0.000 || 100.0 [ 100.0 | 100.0 0.000 | 99.0 [ 99.0 | 99.0
0.500 [| 100.0 [ 95.0 | 100.0 0.500 | 3.1 11 1.9
1.000 [[ 95.0 | 90.0 | 95.0 1.000 | 0.9 0.4 0.8
2.000 || 85.0 [ 80.0 | 90.0 2.000 | 0.6 0.2 0.4
3.000 ] 75.0 [ 70.0 | 80.0 3.000 | 05 0.1 0.4
4,000 || 75.0 | 60.0 | 75.0 4.000 [ 0.4 0.1 0.4
5.000 || 65.0 [ 55.0 | 70.0 5.000 | 0.4 0.0 0.4

Theresultsassertthe likelinessof the threecriteria. All three
of them give a successfurate of outlier finding with minor
lossesof non—corrupteddata points. Note, however, that the
methoddoesnot provide the completedetectionof outliers,as
the outlier interactioneffect describé in SectionVIl attains
to hide some of them. A secondrun of this method on
the data (after removal of the outliers detectedin the first
run) detectssuccessfullythe remaining outliers. Accordingto
our argumentationin Section VIII, the residualmethodscan
disentanglebetterthis interaction and,consequentlydetectall
the outliers in just one run. The price of this methodis a
slightly higherrate of falsedetections.

A further exampleis provided in the analysisof a geoplys-
ical dataset[PR]. The setincludes18634 points orderedin
a squaregrid, plotted in the left of Figure 20. We add 1000
randomlydistributed outliersto this data,yielding the dataon
the right of the sameFigure.In the left of Figure 21 we can
seethe perfomanceof our algorithmwith onerun. A first run
eliminates75% of the outliers, while the data eliminatedby
falsedetectionrdoesnotappeato damageahereconstrugon. A
secondun of thealgorithm,thatis, aniteration on the cleaned
data, offers the reconstructionon the right of the figure. As
we start from a situation where the density of outliers has
beenreduced further outliersthat were previously masled by
neighboringoneshave now beensucessfullydetected.

X. CONCLUSION

We have presentedn this article some robust regression
techniguego handleoutlierswithin a coarse-to-finelatafitting
algorithmbasedon adaptve wavelets.Differentcriteriawhich
are basedon measuing the enegy of reconstructionswith
andwithout the outlier basedon weightedwavelet coeficient
normshave beendevelopedandtestednumerically Our adap-
tive waveletschemeyields a numericallyfastand reliableway
to detectoutliers which can amoun up to 5% of the total
amountof data.
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