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The Hilbert-Huang-Transform (HHT) has proven to be an appropriate multiscale analy-
sis technique specifically for nonlinear and nonstationary time series on non-equidistant

grids. It is empirically adapted to the data: first, an additive decomposition of the data

(empirical mode decomposition, EMD) into certain multiscale components is computed,
denoted as intrinsic mode functions. Second, to each of these components, the Hilbert

transform is applied. The resulting Hilbert spectrum of the modes provides a localized
time-frequency spectrum and instantaneous (time-dependent) frequencies.

For the first step, the empirical decomposition of the data, a different method based

on local means has been developed by Chen et al. (2006). In this paper, we extend
their method to multivariate data sets in arbitrary space dimensions. We place special

emphasis on deriving a method which is numerically fast also in higher dimensions.

Our method works in a coarse-to-fine fashion and is based on adaptive (tensor-product)
spline-wavelets. We provide some numerical comparisons to a method based on linear

finite elements and one based on thin-plate-splines to demonstrate the performance of our

method, both with respect to the quality of the approximation as well as the numerical
efficiency.

Second, for a generalization of the Hilbert transform to the multivariate case, we

consider the Riesz transformation and an embedding into Clifford-algebra valued func-
tions, from which instantaneous amplitudes, phases and orientations can be derived. We

conclude with some numerical examples.

Keywords: Multivariate data analysis, arbitrary space dimension, Hilbert-Huang-
Transform (HHT), empirical mode decomposition (EMD), intrinsic mode functions

(IMFs), tensor product spline wavelets, adaptive wavelet-nD-EMD, monogenic function,

Riesz transform, Clifford algebra.

1. Introduction

The analysis of empirical data in order to detect and parametrize multiscale pat-
terns and shapes is an important problem. Methods of choice are transforms which
decompose the measurement data into multiscale components. Prominent tools are
the Fast Fourier Transform, or the more sophisticated and newer Fast Wavelet
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Transform which are in their classical versions applicable to data living on uniform
grids. Common to both methods is that their expansion components are predefined
bases, i.e, globally supported Fourier bases, or wavelet bases which can be arranged
to live only locally. A drawback of both methods is that they employ for each com-
ponent the same frequency over the whole analysis domain. However, when the
data is nonstationary or nonlinear, one would like to extract instantaneous (i.e.,
location-dependent) frequencies.

This goal motivated the development of the Hilbert-Huang-Transform (HHT)
[Huang et al. (1998)]. Its ingredients are empirically adapted to the data which
makes this technique appropriate, in particular, for irregularly spaced data and for
data which may be classified as nonstationary and nonlinear. The HHT works as
follows. First, one computes an additive decomposition of the data into intrinsic
mode functions (IMFs); this process is called empirical mode decomposition (EMD)
since it is empirically adapted to the data. Second, to each of these IMF components,
the Hilbert transform, a special integral transform, is applied. The resulting Hilbert
spectrum of the modes provides a localized domain-frequency spectrum, allowing,
in particular, for an extraction of instantaneous frequencies.

Since its first appearance, the HHT has been applied to many physical long-
and short-term univariate data, see, e.g., [Huang and Shen (2005)] and references
therein. Recent applications to hydrological data sets may be found in [Rudi et al.
(2010); Huang et al. (2009)]. Despite these successes, the original version in [Huang
et al. (1998)] suffers from certain shortcomings. One is the computation of the
EMD: the algorithm is based on an outer and an inner iterative process for which
appropriate stopping criteria need to be identified. The experience made by us [Koch
(2008); Rudi et al. (2010)] and others is that the parameters within the algorithms
have to be carefully tuned to the data, and different choices produce different EMDs.
Generally speaking, the convergence theory of the iterative EMD scheme is far from
understood. Some steps towards a theoretical understanding may be found, e.g., in
[Sharpley and Vatchev (2006)]. Also boundary effects are still under investigation.
Each inner iteration of the EMD process requires the identification of local maxima
and minima of the data and the computation of upper and lower envelopes in terms
of cubic splines. This may become expensive when millions of data points (even
in the univariate case) need to be analyzed. Accordingly, the originally proposed
procedure has been modified and refined by several authors in the meantime, see,
e.g., [Chen et al. (2006); Deléchelle et al. (2005); Flandrin and Gonçalvès (2004)].

The expense of numerical computations becomes at least apparent when bi-
variate data like images, or general multivariate data in n spatial dimensions, are
to be analyzed. Extensions to derive an empirical mode decomposition of two–
dimensional data may be found in [Bhuiyan et al. (2009); Damerval et al. (2005);
Rilling et al. (2007); Xu et al. (2006)] and in [Wu et al. (2009)] to arbitrary di-
mensions, with applications to adaptive image compression in [Linderhed (2004);
Linderhed (2009)], to texture segmentation and analysis in [Liu and Peng (2002)]
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and [Nunes et al. (2003)], and to synthetic aperture radar (SAR) images in [Yuan
et al. (2009)].

In this paper, we present a generalization of the Hilbert-Huang-Transform
(HHT) to arbitrary space dimensions. For computing the empirical mode decom-
position, we generalize the idea from [Chen et al. (2006)] based on local means to
arbitrary space dimensions. This technique has the advantage that only one approx-
imation of the data instead of an upper and lower envelope has to be computed.

In view of devising a numerical method with minimal computational complexity,
we employ for the generation of the empirical mode decompositions a coarse-to-fine
scheme based on adaptive spline-wavelets developed in [Castaño (2005); Castaño
and Kunoth (2003, 2006)]. Of course, there are several methods for scattered data
interpolation in higher dimensions, among them radial basis functions, see, e.g.,
[Buhmann (2003)]. We will discuss the difference of our method with a method
based on thin plate splines and with another method based on finite elements for
a Delaunay triangulation developed in [Xu et al. (2006)] for two-dimensional data
sets.

The second step, the Hilbert transform, also has to be generalized to extend
analytical (complex-valued) signals to arbitrary dimensions. Here we follow ideas
from [Felsberg and Sommer (2000, 2001); Felsberg (2002)] and consider Riesz trans-
formations and an embedding into Clifford-algebra valued functions in n space di-
mensions in order to generalize instantaneous frequencies. These have been applied
successfully in image analysis [Felsberg (2002); Held et al. (2010)], specifically to ex-
tract intrinsic one- and two-dimensional local features [Nunes and Deléchelle (2009);
Wietzke et al. (2009)], and for image flow estimation [Chan et al. (2008)].

The remainder of this paper is structured as follows. Like the one-dimensional
HHT, our multivariate generalization is also based on two conceptual steps. First,
in Section 2 and specifically in Section 2.2, we introduce a basic iterative scheme for
computing the empirical mode decomposition of multivariate data. We introduce
two specific schemes employing thin plate splines and finite elements in Section
2.3. Our new scheme based on adaptive spline wavelets which we call adaptive
wavelet-nD-EMD is introduced in Section 2.4. We then study relevant parameters
and compare the three algorithms with respect to quality and numerical perfor-
mance in Section 2.5. Section 3 is devoted to some mathematical ingredients for
generalizing the Hilbert transform and the concept of instantaneous frequencies to
construct monogenic Clifford algebra-valued functions in n space dimensions. We
demonstrate the performance and quality of our scheme by some numerical exam-
ples in Section 3.2.

2. Empirical Mode Decompositions (EMDs) in n Dimensions

2.1. Preliminaries

We consider the following multivariate situation. Let Ω ⊂ Rn denote a bounded
(open or closed) set which we will call analysis domain. Typically, we have the situ-
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ation of the unit cube Ω = [0, 1]n. We assume that we are given a set of arbitrarily
distributed points P := {(x`, z`)}Ntotal

`=1 with x` ∈ Ω and real-valued data z` ∈ R for
all ` = 1, . . . , Ntotal.

At times, it will be convenient to consider instead of the set P a continuous
function f : Ω → R. This function may be generated from P by linear continuous
interpolation, or by a least-squares approximation of the data; for the latter, see
Section 2.4.

The goal of the empirical mode decomposition (EMD) is to decompose the
function f additively into finitely many components

f(x) =
J∑
j=1

imfj(x) + rJ(x), x ∈ Ω, (1)

in a data-adapted way. Each of the components imfj : Ω→ R shall be constructed
such that it later allows to define a physically meaningful instantaneous frequency
and amplitude, or, for n > 1, amplitude, phase and orientation functions, motivat-
ing the term intrinsic mode function (IMF). These components are to be determined
that each satisfies the following properties: (i) all maxima are positive and all min-
ima are negative; (ii) the cardinality of maxima and minima coincides; (iii) they are
‘localized’ around zero. Finally, the function rJ : Ω → R is called the residual and
shall be monotone.

Previous constructions for the bivariate case (n = 2) have been as follows. The
method in [Liu and Peng (2002)] has generalized the one-dimensional construc-
tion by using tensor products. Their 2D-EMD algorithm freezes one variable while
applying the 1D-EMD construction with respect to the other variable. The result-
ing IMFs are then 1D-IMFs to which later the Hilbert transform can be applied
component-wise. While this strategy principally also applies to higher dimensions
than two, its use is limited since the function must be sampled on an anisotropic
grid with grid lines parallel to the coordinate axes (assuming also that in the case
of discrete data the x` ∈ Ω must stem from such a grid). Because of its prod-
uct structure, it becomes expensive for higher spatial dimensions n. In [Wu et al.
(2009)], a multi-dimensional ensemble empirical mode decomposition (MEEMD)
is proposed. The decomposition is based on applications of an ensemble empirical
mode decomposition (EEMD) to slices of data in each spatial dimension. The final
reconstruction of the corresponding IMFs is based on a comparable minimal scale
combination principle.

The idea in [Xu et al. (2006)] is to define a natural extension of the univariate
B-spline-EMD as follows. For a given function f : R2 → R one identifies first local
maxima, minima and saddle points, and uses them to define a Delaunay triangu-
lation of the analysis domain. One then defines local means in terms of weighted
point evaluations at the extremal points and uses these to define a local mean of f
in terms of linear continuous finite element basis functions. Since this approxima-
tion is not continuously differentiable, a further certain smoothing is applied. The



April 15, 2010 19:42 hht-nd

Fast EMD of Multivariate Data Based on Adaptive Spline-Wavelets 5

advantage of this approach is that only one approximation of the data in terms
of local means is required, but it is not guaranteed that the creation of artificial
extrema is avoided.

The methods in [Damerval et al. (2005); Linderhed (2004); Nunes et al. (2003)]
canonically extend the original method from [Huang et al. (1998)] to two dimensions
by first identifying local maxima and minima, building a Delaunay triangulation,
and computing a piecewise cubic interpolation of the maxima and the minima each.
The remainder of the EMD algorithm is then like in the original version. Note
that these methods are based on the computation of Delaunay triangulations which
requires a complexity of O(N logN) in their fastest form for N data points. Further
variants for two spatial dimensions based on radial bases functions or on multilevel
B-Splines have been presented in [Nunes and Deléchelle (2009)].

2.2. General form of the main EMD algorithm

Our guidelines for a development of an EMD are as follows. First, the method
should principally be applicable in n spatial dimensions. Second, the scheme should
be of optimal linear complexity, requiring only O(N) arithmetic operations and
storage. Because of the latter, we have incorporated the idea from [Chen et al.
(2006)] working with local means to solve in each inner step of the EMD process
only one interpolation problem. In fact, later we will not interpolate data exactly
but approximate them in a least-square-fashion. We assume in the following spatial
dimension n > 1 and proceed as follows. We identify the set of extrema and saddle
points of f , i.e.,

Xf := {x` ∈ Ω : f(x`) is maximum, minimum or saddle point of f}. (2)

(In the univariate case, n = 1, saddle points do not need to be considered.) We
denote by N := |Xf | the cardinality of this set. We assume that we have at our
disposal a basis {ϕ`}N`=1 of an N -dimensional subspace of L2(Ω)∩ C0(Ω). As usual,
L2(Ω) denotes the space of Lebesgue-square integrable functions. The basis {ϕ`}`∈Z
will be specified later. In order to determine appropriate (in a sense to be made
precise) function values at the interpolation points x` ∈ Xf , we employ a general
smoothing functional µ defined by

µ(x`) := S ∗ f(x`), ` = 1, . . . , N. (3)

Here S denotes a general low-pass filter (typically a set of positive weights) and the
operation ∗ some filtering (usually a positively weighted sum). Of course, there are
different possibilities to select the latter; we will specify them later. We define the
local mean of f at x ∈ Ω as

m(x) :=
N∑
`=1

µ(x`)ϕ`(x). (4)
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Note that most of these terms vanish if the basis functions ϕ` are compactly sup-
ported. With these notions, we can now formulate the nD-EMD algorithm in Al-
gorithm 1 analogously to [Huang et al. (1998)]. Specifically, we employ as stopping
criterion a threshold on the standard deviation

Std(f, g) :=

∫
Ω
|f(x)− g(x)|2dx∫

Ω
|g(x)|2dx

, f, g ∈ L2(Ω), (5)

which means in Step (5) of the algorithm termination of the procedure if the
normalized squared difference between two successive approximations has reached
the predefined thresholding value ε1. The outcome of the algorithm is an exact
additive data-adapted decomposition (1).

Algorithm 1 (nD-EMD).
Set h1,1 := f and thresholding parameters ε1, ε2, ε3 > 0.
For j = 1, 2, 3, . . .

For k = 1, 2, 3, . . .
(1) compute the set of characteristic points Xhj,k

(2) compute the functionals {µ(x`) : x` ∈ Xhj,k
}

(3) compute the local mean mj,k(x) :=
∑

x`∈Xhj,k

µ(x`)ϕ`(x)

(4) set hj+1,k := hj,k −mj,k

(5) If Std(hj+1,k, hj,k) < ε1 go to (6)

Else set k := k + 1 and go to (1)

End For

(6) set imfj := hj,k and rj := hj,1 − imfj
(7) If |Xrj | < ε2 or |rj | < ε3 or | imfj | < ε3 Return

Else set j := j + 1, k := 1, hj,k := rj−1 and go to (1)

End For

Note that the final level J for the approximation (1) is determined through the
algorithm in Step (7). We will discuss in the following some key aspects of Algo-
rithm 1: the form of the smoothing functional µ in Step 2, the choice of basis in
Step (3) and appropriate ranges for the thresholding parameter ε1 for the standard
deviation criterion in Step (5).

2.3. Two constructions: Finite elements and thin-plate-splines

Clearly the choice of the smoothing functional (3) strongly influences the results
of the whole procedure, as it determines, together with the choice of the basis, the
shape of the intrinsic mode functions. In order to define such a functional, one can
proceed as follows. Starting from the characteristic points of f assembled in Xf , we
decompose Ω into simplices Ω` such that (i) Ω ⊆ ∪`Ω`; (ii) every vertex xs of Ω` is
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either in Xf or on the boundary of Ω; (iii) the decomposition shall be regular, i.e.,
smallest angles are bounded away from zero by a fixed positive constant. In two or
three space dimensions, one may employ a Delaunay triangulation for this purpose.

We then define the set of neighboring points of a given point x` as

N` := {xk ∈ Xf : x`xk is an edge in the decomposition of Ω}. (6)

We further specify the smoothing functional depending on a weight parameter
0 ≤ α ≤ 1 as

µ(x`) = S ∗ f(x`) := αf(x`) + (1− α)
∑

xk∈N`

‖x` − xk‖∑
xs∈N`

‖x` − xs‖
f(xk) (7)

for ` = 1, . . . , N . Here ‖ · ‖ denotes the Euclidean norm on Rn. This functional
provides a local mean between the function values of f and its neighbors with
weight α. A numerical study of different choices of α can be found in [Koch (2008)],
Chapter 7. In the sequel, we will consider always this choice of functional.

Next we will concentrate on the choice of basis {ϕ`}N`=1 for an N -dimensional
subspace of L2(Ω) ∩ C0(Ω). We have experimented with different choices; here we
consider the following three approaches. The most natural choice are the linear
continuous finite elements (FE), specifically defined as nodal bases over the decom-
position of Ω which satisfy ϕ`(x`) = 1 and ϕ`(xk) = 0 for all k 6= `. These are
compactly supported and easy to compute.

Second, we consider thin-plate-splines (ThP) which are a higher dimensional
analogue of the cubic univariate spline on the decomposition of Ω. They provide
a compromise between interpolating function values exactly and minimizing the
so-called ”bending energy”

E(g) =
∫

Ω

n∑
j,k=1

(
∂2g

∂xj ∂xk

)2

dx.

This means that the thin-plate-splines minimize the quadratic functional

EThP(g) =
N∑
`=1

‖z` − g(x`)‖2 + νE(g) (8)

where ν is some positive weighting parameter. The bases for thin-plate-splines are
functions ϕThP : Ω→ R which have the general form

ϕThP(x) =
N∑
`=1

ν`%`(x) + q(x), x ∈ Ω, (9)

where %`(x) := ‖x−x`‖2 log(‖x−x`‖) are radial basis functions and q is a polyno-
mial of degree 1. Although thin-plate-splines easily allow to control the smoothness
of the resulting function, they do have the essential disadvantage that they are
globally supported and, hence, computationally expensive.

Our last choice of basis functions will be tensor product spline wavelets (Wav).
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2.4. Adaptive wavelet-based empirical mode decompositions

(Adaptive wavelet-nD-EMD)

The spline wavelets we employ are initially defined on uniform grids but will be
used within Algorithm 1 in Step (3) to define an adaptive coarse-to-fine approxi-
mation to the local mean. Such an adaptive data fitting procedure based on a least–
squares scheme with smoothing has been introduced in [Castaño (2005); Castaño
and Kunoth (2003, 2006)].

The theoretical background is a compactly supported wavelet basis Ψ := {ψλ :
λ ∈ I} for L2(Ω). Each wavelet index λ := (j, k, e) comprises different parameters:
j =: |λ| for the resolution level, k for the location of the basis function and a
further technical construction parameter e for n > 1. By definition, a wavelet basis
Ψ is a basis for L2(Ω) with the following properties: (i) Ψ is a Riesz basis for
L2(Ω) such that each g ∈ L2(Ω) has a unique representation g =

∑
λ∈I dλ ψλ and

‖g‖2L2(Ω) is bounded from above and below uniformly by the `2-norm of its expansion
coefficients

∑
λ∈I |dλ|2; (ii) ψλ has compact support with support size in the order of

2−j = 2−|λ|. Moreover, here we take wavelets which are (iii) semiorthogonal between
different resolution levels, i.e.,

∫
Ω
ψλ1(x)ψλ2(x) dx = 0 whenever |λ1| 6= |λ2|. Among

the many different types of wavelets, we employ tensor products of the boundary-
adapted semi-orthogonal linear spline-wavelets from, e.g., [Stollnitz et al. (2006)].
These are tensor products of linear combinations of continuous piecewise linear
hat functions. Of course, we could have chosen spline-wavelets based on smoother
splines but wanted to make them most comparable to the linear FE situation from
Section 2.3.

From the infinite number of wavelets in Ψ, we construct in an adaptive fashion
from coarse to finer resolution levels the (uniquely defined) minimum of a quadratic
functional similar to (8),

EWav(g) =
N∑
`=1

‖z` − g(x`)‖2 + νFWav(g), (10)

where FWav(g) is a generalized smoothing functional (generally based on a Besov
norm). The result is an approximation

fΛ(x) =
∑
λ∈Λ

dλ ψλ(x), x ∈ Ω, (11)

to f based on a finite set of indices Λ ⊂ I. This approximation is data-adapted and
has the following properties: Only wavelets in whose support are sufficiently many
data points will be present in the approximation (11). This allows particularly for
very non-uniformly distributed data points in the original set P or the set Xf . A
decomposition of the domain Ω like an (expensive) Delaunay triangulation is not
required. Moreover, only expansion coefficients which are above a certain threshold
need to be considered; this is a consequence of the Riesz basis property (i). There
are a number of algorithmic ingredients like iterative solvers for the minimization
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conditions of (10) combined with a nested iteration which makes this algorithm very
fast even for dimensions n ≥ 3. Specifically, one can exploit that typically N � |Λ|,
i.e., the amount of points in Xf is much larger than the cardinality of the bases
used for the computations. Furthermore, the semi-orthogonality (iii) of the bases
essentially decouples different resolution scales, see [Castaño (2005)] for details and
extensive numerical experiments.

Within Algorithm 1, this adaptive spline-wavelet approximation is now used as
follows. We replace Step (3) to compute the local mean by the minimum of the
least-squares data fitting problem using (10) where we have actually set ν = 0. That
is, in the wavelet-nD-EMD algorithm Step (3) is exchanged by

(3new) compute the local mean mj,k as the minimum of

|Xhj,k
|∑

`=1

(µ(x`)−mj,k(x`))2.

The computations based on adaptive wavelets have been performed using the pack-
age fit3 developed in [Castaño (2005)].

2.5. Numerical experiments

In order to assess the quality of the three different EMD schemes, we compare them
using a synthetic bivariate example function, see Figure 1, additively composed
as the sum of a fast (fstrd1) and a slowly oscillating cosine function (fstrd2). The
function fstrd := fstrd1 + fstrd2 is evaluated on a uniform grid with 200 points in
each coordinate direction. We then construct for the three different approaches
the empirical mode decomposition according to Algorithm 1 with the modification
of Step (3) in the wavelet-nD-case. We expect that the first two intrinsic mode
functions are in fact the two components of the test function: the first one should
catch the faster frequencies and the second the slower ones.
First we see in Figure 2 the result using linear finite elements (FE). Displayed are
the first two intrinsic mode functions, imf1 and imf2 and, additionally, the deviation
of the second (slowly oscillating) component of fstrd to imf2. This low oscillatory
component fstrd2 has proved to be more difficult to be extracted correctly. We notice
that the method based on linear FE fails to correctly represent imf2 as the second
component of the test function.
We see the results of the corresponding experiment using thin-plate-splines in Figure
3 and adaptive spline-wavelets in Figure 4.
We conclude that the quality of the approximation using the FE method is not
satisfactory. In contrast, the ThP method and the Wav scheme provide a correct
extraction of both imf components, in particular, imf2.

After considering the quality of reconstruction, we next need to compare compu-
tational times. Adaptive methods usually require more sophisticated data structures
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Fig. 1. Test function fstrd (top), composed as the sum from fstrd1 (middle) and fstrd2 (bottom).

because of their inherent hierarchy which might be disadvantageous when compar-
ing speeds. We have measured computational times in seconds for the complete
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EMD algorithms using the three different methods when increasing the number of
points in Xf in each coordinate direction. For the FE method, we have for this
example used an algorithm based on the techniques developed in [Kobbelt et al.
(1998)] for which optimal linear complexity O(N) for the total number of points
N was established. The result is displayed in Figure 5 for a Intel(R) Core(TM)

2 CPU with 2.40 GHz. All programs were implemented in C++.
We notice that the linear Finite Elements (FE) and the adaptive wavelet scheme

have similar costs with a very slight advantage of the Wav algorithm. Specifically,
this plot confirms the optimal linear complexity of the adaptive wavelet scheme.
The thin-plate spline approach is much more expensive on account of the globally
supported basis functions; note the logarithmic scale in the time direction.

Since the linear FE method fails due to unsatisfactory reconstruction and the
thin-plate-spline approach is too expensive, as we have seen for this simple synthetic
example, we will consider from now on only the adaptive wavelet-nD-EMD.

Finally, we investigate the influence of the thresholding parameter ε1 controlling
the inner iteration in Step (5) of Algorithm 1. We consider a test image gstrd

constructed as the sum of two images with fast and slowly oscillating features gstrd1

and gstrd2 respectively, see Figure 6. We compute the adaptive wavelet-nD-EMD for
different values of ε1. Again we expect that the first two resulting intrinsic mode
functions are similar to the two components of the test function. We can get an
idea of the quality of the decomposition by looking at the second, slower frequency
component.
We have found that the quality of the resulting imfs depends strongly on how
the thresholding parameter ε1 is chosen. Figure 7 shows in each row the first two
intrinsic mode functions for different values of ε1. The top row displays the result for
a very good choice ε1 = 0.02. Here, the number of inner iterations in Algorithm 1
was k = 13 for the first imf and k = 6 for the second imf. A too large parameter
like ε1 = 0.2 results in an insufficient reconstruction, as shown in the second row.
Here the number of interior iterations was only k = 2 and k = 1 for the first and
second imf, respectively. For this value of ε1, the algorithm exits from the inner loop
prematurely and the resulting imf contains too little information from the signal.
Choosing the parameter too small, e.g., ε1 = 0.009 displayed in the bottom row,
additional oscillations, noise or artefacts are introduced. Moreover, this costs many
more inner iterations: k = 200 for the first imf and k = 48 for the second imf. Also,
in both cases, the relative errors of the imf to the specific components of the test
function increase when deviating too far from the optimal range which is for this
example ε ∈ (0.02, 0.03).
Further experiments including the choice of the weight parameter α in (7) can be
found in [Koch (2008)].
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Fig. 2. Empirical mode decomposition of test function fstrd using linear Finite Elements (FE): the

first two intrinsic mode functions imf1 (top) and imf2 (middle) and the deviation of the second
component of the test function fstrd2 to the second intrinsic mode function imf2 (bottom).



April 15, 2010 19:42 hht-nd

Fast EMD of Multivariate Data Based on Adaptive Spline-Wavelets 13

Fig. 3. Empirical mode decomposition of test function fstrd using thin-plate splines (ThP); ar-
rangements of plots as in Figure 2.
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Fig. 4. Empirical mode decomposition of test function fstrd using adaptive spline wavelets (Wav):
arrangement of plots as in Figure 2.
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Fig. 7. Adaptive wavelet-nD-EMD for ε1 = 0.02 (top row), ε1 = 0.2 (middle row) and ε1 = 0.009

(bottom row): the first two intrinsic mode functions imf1 and imf2.
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3. Generalization of Hilbert Spectral Analysis

3.1. Monogenic signals

Once the data is decomposed into an nD-EMD according to (1), one can compute
from each component imfj a monogenic signal. This is a multivariate generaliza-
tion of the complexification of a real-valued one-dimensional function in terms of
the Hilbert transform which has a long tradition in signal analysis, see, e.g., [Hahn
(1995)]. For univariate functions, this allows one to define instantaneous (location-
dependent) frequencies and amplitudes and a corresponding Hilbert spectrum. For
functions living on two-dimensional domains like images, a corresponding general-
ization enables to define local amplitude, orientation and phase functions. This has
been developed in [Felsberg and Sommer (2001)] for n = 2 and for the case of gen-
eral space dimension n in [Felsberg and Sommer (2000)]. The natural generalization
leads to Clifford-algebra-valued functions and, for n = 2, to quaternions. We follow
this construction which we briefly summarize here.

Starting from the decomposition (1), we therefore compute from each nD com-
ponent imfj a monogenic signal

imfjM (x) := imfj(x) + imfjH (x)e1 where imfjH := imfj ∗hn. (12)

Here e1 ∈ Rn is the first unit vector. The function hn is the convolution kernel of
the Riesz transform, a multivariate generalization of the Hilbert transform, and is
given by

hn(x) := cn
x
‖x‖n+1

e1, (13)

where cn is an explicitly known constant depending on the spatial dimension n.
Practically, a monogenic signal can be computed by applying Hilbert and Radon
transforms. For a monogenic signal fM , one can define a local amplitude function

a(fM )(x) :=
√
fM (x) fM (x), a phase function φ(fM )(x) := arg(fM (x)) ∈ [0, 2π)

and orientation functions θ1, . . . , θn−1 ∈ [0, π), see [Felsberg and Sommer (2000)].
Based on the representation (1) and the manipulation (12) for each imfj , we

define the cumulative monogenic signal of f : Ω→ R as

fkum(x) :=
J∑
j=1

imfjM (x) =
J∑
j=1

(imfj(x) + imfjH (x) e1). (14)

For this cumulative function we can assemble an orientation vector based on the
local orientations θ := (θ1, . . . , θn−1)T of each nD intrinsic mode function as

θ(fkum)(x) :=

 θ(imf1M
)(x)

...
θ(imfJM

)(x)

 ∈ RJ(n−1), (15)
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and similarly a phase and amplitude vector of the cumulative function,

φ(fkum)(x) :=

φ(imf1M
)(x)

...
φ(imfJM

)(x)

 ∈ RJ ; a(fkum)(x) :=

 a(imf1M
)(x)

...
a(imfJM

)(x)

 ∈ RJ .

(16)

3.2. Numerical experiment

Specifically the local amplitude can be used for two-dimensional images to detect
local edges since it only reacts at edges and vanishes otherwise. In order to show
agreement with existing results and interpretations in the literature [Felsberg and
Sommer (2001)], we will show this in the following numerical experiment for a
bivariate function.

We display in Figure 8 a composed image on the left and on the right the
amplitude functions of the corresponding monogenic signal. One can see from the
latter strong oscillating features on the finest scale. The amplitude function reacts
at the edges and vanishes otherwise. We decompose the image on the left using
the adaptive wavelet-2d-EMD and find eleven 2d-imfs and a residual. The first imf1
can be seen in Figure 9 on the left together with the amplitude function of the
corresponding monogenic signal on the right. We clearly see that imf1 contains the
components on the finest scale.

 

 

Fig. 8. Composed original image (left) and amplitude function of the corresponding monogenic
signal (right).

The second 2D-imf describes the function part on the next coarser intrinsic scale. It
is displayed in Figure 10 on the top left together with the local amplitude function
(top right), the local orientation function (bottom left) and the local phase func-
tion (bottom right) of the corresponding monogenic signal. One can see that the
local amplitude function is only visible after the decomposition into the inherent
pattern on a coarser scale, the circular structure. The local orientation function
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Fig. 9. First 2D-imf1 of the EMD (left) and amplitude function of the corresponding monogenic
signal (right).

displays edges and one-dimensional subspaces orthogonal to locally constant direc-
tions. Finally, the local phase shows symmetries of the inherent one-dimensional
local functions in the direction of the one-dimensional subspaces described by the
local orientations.

These results and interpretations are in perfect accordance to previously made
observations [Felsberg and Sommer (2001); Nunes and Deléchelle (2009)]. This
shows that the imfs from our adaptive wavelet nD-EMD are perfectly suited for
image analysis using monogenic signals as previously used EMD methods.

4. Conclusions

We have presented a general setup for an n–dimensional empirical mode decom-
position. In order to obtain a method with optimal complexity, we have combined
a method based on local means with an adaptive wavelet data fitting procedure.
We compared our method with a scheme based on finite elements and a method
based on thin-plate-splines and found it superior both with respect to the quality
of the reconstruction and the speed of computations. Specifically, our method has
been shown to be of optimal linear complexity. We also studied the decomposition
quality when changing the relevant stopping parameter in the EMD process.

Computing afterwards via monogenic signals of each nD-imf a cumulative func-
tion, we can extract local amplitude, orientation and phase functions and find our
results in perfect agreement with previously published results from image analysis.
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Fig. 10. Second 2D-imf2 of the EMD (top left); amplitude function (top right), orientation function

(bottom left) and phase function (bottom right) of the corresponding monogenic signal.
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