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MulƟ scale Analysis of 
Hydrologic Time Series Data using 
the Hilbert–Huang Transform
For the analysis of Ɵ me series data from hydrology, we used a recently developed tech-
nique that is by now widely known as the Hilbert–Huang transform (HHT). Specifi cally, it 
is designed for nonlinear and nonstaƟ onary data. In contrast to data analysis techniques 
using the short-Ɵ me, windowed Fourier transform or the conƟ nuous wavelet transform, 
the new technique is empirically adapted to the data in the following sense. First, an addi-
Ɵ ve decomposiƟ on, called empirical mode decomposi  on (EMD), of the data into certain 
mulƟ scale components is computed. Second, to each of these components, the Hilbert 
transform is applied. The resulƟ ng Hilbert spectrum of the modes provides a localized 
Ɵ me–frequency spectrum and instantaneous (Ɵ me-dependent) frequencies. In this study, 
we applied the HHT to hydrological Ɵ me series data from the Upper Rur Catchment Area, 
mostly German territory, taken during a period of 20 yr. Our fi rst observaƟ on was that 
a coarse approximaƟ on of the data can be derived by truncaƟ ng the EMD representa-
Ɵ on. This can be used to beƩ er model paƩ erns like seasonal structures. Moreover, the 
corresponding Ɵ me–frequency energy spectrum applied to the complete EMD revealed 
seasonal events in a parƟ cular apparent way together with their energy. We compared the 
Hilbert spectra with Fourier spectrograms and wavelet spectra to demonstrate a beƩ er 
localizaƟ on of the energy components, which also exhibit strong seasonal components. 
The Hilbert energy spectrum of the three measurement staƟ ons appear to be very similar, 
indicaƟ ng liƩ le local variability in drainage.

AbbreviaƟ ons: EMD, empirical mode decomposiƟ on; HHT, Hilbert–Huang transform; IMF, intrinsic 
mode funcƟ on. 

Given empirical data, the detection and parameterization of multiscale patterns 
and shapes in the measurements is an important task. Specifi cally, to study the eff ect of 
patterns on water and solute fl uxes, temporal and spatial data have to be analyzed at vari-
ous stages so that their parameterization can eventually be used in simulation fl ux models.

Th is study was part of a SFB/TR32 project (Transregional Collaborative Research Centre 
32,  www.tr32.de; verifi ed 3 June 2010) for which the overall objective is to improve our 
knowledge about the mechanisms leading to spatial and temporal patterns in energy and 
matter fl uxes of the soil–vegetation–atmosphere system. Part of the objectives is the determi-
nation, description, and analysis of patterns derived from diff erent sources. For instance, the 
large spatial and temporal variability of soil moisture patterns is determined by factors like 
atmospheric forcing, topography, soil properties, and vegetation, which interact in a complex, 
nonlinear way (see, e.g., Grayson and Blöschl, 2001; Western et al., 2004). Th us, a very large 
number of continuous soil moisture measurements are necessary to adequately capture this 
variability. In the framework of the TR32, a dense soil moisture sensor network for monitor-
ing soil water content changes at high spatial and temporal scales has been set up (see Bogena 
et al., 2007, 2009, 2010; Rosenbaum et al., 2010). Due to the fact that long-term soil moisture 
data from the SFB/TR32 study area, the catchment of the Rur River, were not available, 
we focus here on long-term runoff  discharge measurements taken from three rivers with 
low management infl uence located in the southern part of the Rur catchment. Since runoff  
discharge and soil moisture time series data exhibit similar temporal patterns, this study 
can be considered as preliminary for the analysis of the soil moisture sensor network data.

For the detection of structures and patterns at diff erent scales, the method of choice is to trans-
form and thereby decompose the measurement data into multiscale components. Classical and 
widely established methods are the short-time Fourier transform or, more recently, continuous 
wavelet transforms. Th e potential of wavelets as an analysis and approximation tool has been 
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demonstrated in diff erent areas (see, e.g., Castaño and Kunoth, 2006; 
Castaño Diez et al., 2009; DeVore and Kunoth, 2009).

An example of the analysis of hydrometeorologic data by means 
of wavelets was given in Bachner et al. (2006). In that study?, the 
goal was the identifi cation and fi ltering of dominant time scales in 
statistical indices of daily time series. Wavelet analysis provided a 
temporally varying power spectrum and does not require stationar-
ity of the data. Kang and Lin (2007) performed wavelet analysis of 
hydrologic and water quality signals in an agricultural watershed 
using a weighted wavelet-Z transform. Schaefl i and Zehe (2009) 
proposed a method for rainfall–runoff  model calibration and per-
formance analysis by fi tting a wavelet power spectrum estimated 
from measurement data. A review of spectral and wavelet meth-
ods together with detailed procedures for providing spatial scaling 
analyses of physical soil properties was provided in Si (2008).

Nevertheless, methods based on the short-time Fourier transform or 
the continuous-wavelet transform have the following disadvantages 
for time series data. First, they require data on uniform grids. Second, 
as demonstrated in Huang et al. (1998), if the data are nonlinear 
and nonstationary, these transforms oft en do not lead to physically 
meaningful results. Th e reasons are fundamental construction ingre-
dients: they allow only certain linear combinations of predefi ned 
bases and for each component the same frequency is used across the 
whole time domain. Although wavelets have the advantage over the 
Fourier basis in that they allow a localized identifi cation of the sig-
nifi cant frequency components, the motivation for the new approach 
developed in Huang et al. (1998) was to fi nd a better decomposition 
into components that are adapted to the specifi c data set.

In this study, we followed this approach to analyze nonlinear and 
nonstationary temporal data by applying the Hilbert–Huang 
transform (HHT) developed in Huang et al. (1998). In its origi-
nal version, it was designed to handle nonlinear and nonstationary 
time series in one dimension. Th e principle of the HHT is as fol-
lows: First, the time series is iteratively decomposed into empirical 
adaptive nonlinear modes (intrinsic mode functions or IMFs) that 
exhibit nonlinear shapes and patterns and are physically meaning-
ful (in a sense to be made precise below). Th is process is called 
empirical mode decomposition (EMD). Second, the Hilbert spec-
tral analysis of the IMFs then provides a localized time–frequency 
spectrum and a possible extraction of instantaneous frequencies.

By now this method has been used for many physical long- and 
short-term univariate data (see, e.g., Huang and Shen, 2005, and 
references therein). A very recent study where Hilbert spectral 
analysis was applied to hydrologic data is Huang et al. (2009), 
where daily river fl ow fl uctuations were analyzed.

Th e original scheme has been modifi ed and refi ned by several research-
ers during the past decade  (see, e.g., Chen et al., 2006; Deléchelle et 
al., 2005; Flandrin and Gonçalvès, 2004; Flandrin et al., 2004). First, 

extensions to derive an EMD of two-dimensional data was developed 
by Damerval et al. (2005) and Xu et al. (2006), and applications for 
adaptive image compression by Linderhed (2004). Koch (2008) com-
pared several methods for computing the EMD for two-dimensional 
data with respect to their numerical performance. Th is was extended 
by Jager et al. (2010) with a focus on numerical effi  ciency, which is 
mandatory, in particular, for multisensorial data in several space 
dimensions. Moreover, the second step, the Hilbert transform, also 
needed to be generalized to extend the analytical signals to arbitrary 
dimensions. Based on ideas using Cliff ord algebra and Riesz trans-
forms from Felsberg and Sommer (2000, 2001), a corresponding fast 
numerical scheme and results for two-dimensional data was developed 
by Koch (2008) and Pabel et al. (2010).

 The Hilbert–Huang Transform
Empirical Mode DecomposiƟ ons
Th e advantage of the HHT developed by Huang et al. (1998) over 
the Fourier decomposition or a wavelet decomposition is that it 
can be used to analyze nonlinear and nonstationary data across 
irregular time grids. Th e HHT works by iteratively decomposing 
the time series into a fi nite number of IMFs through an EMD 
process. Aft er the data-driven additive decomposition is obtained, 
a second step, detailed below, is applied to each IMF component 
in the Hilbert transform, yielding a time–frequency distribution 
of the energy, the so-called Hilbert spectrum.

First we describe the EMD process as originally designed by Huang 
et al. (1998), with a synthetic example from Rilling et al. (2003). A 
set of real-valued time series data {(tℓ,zℓ)}ℓ∈Z is called a nonlinear 
and nonstationary data set if there exists a number m ∈ Z such 
that the common probability distribution of zℓ, …, zℓ+m depends 
on the time index ℓ. All sorts of measurement data from physical 
processes usually satisfy this condition. It is convenient to describe 
the methods by considering, instead of discrete time series data, a 
continuous function s:R → R. Note that a continuous function 
can always be generated from discrete data by (linear continuous) 
interpolation or by a least-squares approximation of the data.

Th e goal of the method is to decompose the function into fi nitely many 
components, which later allows the defi nition of instantaneous (time-
dependent) amplitudes and frequencies. Th e specifi c feature of the 
decomposition considered here is that these components are adaptively 
derived from the input data. Th ese data-driven components are deter-
mined in such a way that they satisfy the following properties. We 
say that a function imf:R → R is an IMF if (i) the number of local 
extrema and zero points of the IMF diff er mostly by one; and (ii) at 
any point, the mean value of the cubic spline that interpolates all local 
maxima and of the cubic spline that interpolates all local minima is 
zero. A cubic spline is a function consisting of piecewise polynomials 
of the third degree joined together such that their second derivative 
is still a continuous function. Th us, an IMF represents a basic oscil-
lation that is symmetrically localized around the ordinate axis. Th e 
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collection of IMFs may be viewed as a data-adapted basis that is not 
known a priori since they additively decompose the data (viewed as a 
continuous function) in a unique way once the iteration parameters 
are fi xed. Th ese functions are the natural generalizations of Fourier 
components, with the diff erence that they have a variable amplitude 
and a variable frequency as a function of time, called the instantaneous 
amplitude and instantaneous fr equency. In contrast, the Fourier basis 
and the wavelet basis are known a priori.

For illustration purposes, we describe the subsequent EMD 
process using the synthetic function displayed in Fig. 1. Th is 
function s is additively composed from a sine wave and two 
piecewise linear continuous functions with diff erent periodici-
ties. It will be decomposed into a fi nite number of IMFs and a 
monotone residual by the following iterative process.

Th e decomposition is based on two iterations: one inner loop, called 
sift ing, which has generated a single IMF aft er its completion, and an 

outer loop, which consists of the decomposition into the diff erent 
IMFs. For computing a single IMF, an upper and lower envelope s+,s− 
of the local maxima or minima is computed, consisting of cubic splines, 
which contain in their convex hull the original signal s (see Fig. 2A).

For the diff erence between the original signal s(t) and the mean 
m1,1(t) := 1/2[s+(t) + s−(t)], which is shown in Fig. 2B, that is, 
h1,1(t) := s(t) − m1,1(t), one again computes the upper and lower 
envelopes, subtracts the mean m1,2(t) and repeats the process with 
the new signal h1,2(t) := h1,1(t) − m1,2(t) until a standard mean 
deviation criterion is met; for details and a discussion of appropri-
ate termination criteria, see Huang et al. (1998) and Koch (2008). 
Th e result is called imf1(t). Th e next inner sift ing process then starts 
with the residual r1(t) := s(t) − imf1(t), yielding the second imf2(t). 
Aft er termination of the last outer iteration, combining all com-
ponents fi nally results in an additive decomposition:

( ) ( ) ( )
=1

= imf
n

j n
j

s t t r t+∑  [1]

Fig. 1. (A) Synthetic function s, additively composed from (B) a sine wave and (C and D) two piecewise linear continuous functions with diff erent periodicities.
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where rn is a constant or monotone residual. By this we mean that 
rn is the remainder of the decomposition, which is a monotone 
function and, therefore, has at most one root (i.e., at most one 
zero). Th is residual may be viewed as a trend in the data. For the 
synthetic data from Fig. 1, the result of the iterative process, the 
EMD, is shown in Fig. 3.

Although synthetic, this example is very illustrative: it can be seen 
that the fi rst three components are clearly recovered from the origi-
nal data; according to the construction, the function imf1 contains 
the fastest oscillations. Th e appearance of an additional function 
imf4 (compared with the original signal s) is caused by interpolation 
errors and boundary eff ects. Note, however, the scale: the modulus 
of the amplitude is bounded by 0.04, which can be considered neg-
ligible in this example. Also, the monotone residual is on this order.

Note that the diff erent IMFs are approximations of linear combina-
tions of cubic B splines—they are approximations because the process 
is iterative. Th is can be seen from the results for the synthetic example 
by comparing the plots in Fig. 1 with the ones in Fig. 3. Each IMF is 
approximately a linear combination of cubic B splines for which, how-
ever, the expansion coeffi  cients are determined by the data. Th is means 
that diff erent data sets, even if sampled on the same uniform grid, yield 
diff erent IMFs. Also, the frequencies may diff er within an IMF. In that 
sense, the diff erent IMFs are not the same as simply a linear combina-
tion of cubic B splines all stemming from the same resolution grid.

Finally, note that we did not claim that to not make use of a basis 
at all. In fact, for the iteration procedure, it is essential to have one. 
Th e main diff erence between the EMD decomposition Eq. [1] (or 
Eq. [11] below) and, e.g., the Fourier representation Eq. [12] below 
is that the Fourier representation has a fi xed basis exp(iωjt), and its 
expansion coeffi  cients aj can only attain a certain constant value for 
each j, whether this is needed locally or not. For a wavelet expansion, 
although the basis functions have local support, also the expansion 
coeffi  cients can only take on a constant value. In contrast, the EMD 
decomposition or its HHT version (Eq. [11]) allows a time-depen-
dent coeffi  cient that is constructively adapted to the data.

 Hilbert Spectral Analysis
Once the data are decomposed into an EMD according to Eq. [1], 
the Hilbert transform can be applied to each IMF component and 
instantaneous frequencies can be computed by means of these. Th e 
main idea is to generate from a real-valued signal s a complex-valued 
extension (by means of the Hilbert transform), called the analyti-
cal representation of the signal or, shortly, the analytical signal. Th is 
technique has a long tradition in signal processing (see, e.g., Cohen, 
1994; Flandrin, 1999; and, specifi cally, Hahn, 1995). Th e main idea 
is the observation that the negative frequency components of the 
Fourier transform of a real-valued function do not have to be taken 
into account, due to the Hermitian symmetry of such a spectrum 
(see Eq. [7] below). Th en these negative frequency components can 
be discarded without losing information under the condition that a 

Fig. 2. Synthetic function s (blue) (A) between its upper envelope s+ and its lower envelope s− (both green), and (B) with its mean function m1,1 (red).
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Fig. 3. Empirical mode decomposition (EMD) of (A) synthetic function s into intrinsic mode functions (B) imf1, (C) imf2, (D) imf3, (E) imf4, and (F) 
a monotone residual r4. Note the diff erent ordinate scaling for the last two components in comparison with the other ones.
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complex-valued function is now used for computation instead. For 
the analytical signal then, time-dependent (instantaneous) ampli-
tudes and frequencies can be defi ned. In many applications, this is 
considered “physically meaningful” (see, e.g., Huang and Shen, 2005).

Th e Hilbert transform H[s] of a function s:R → R is defi ned as 
the integral transform:

[ ]( )
( )

( ) ( )
0 0

1
:= PV d

1 1
:= d d ,lim lim

t

t

s u
s t u

t u
s u s u
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[2]

where PV is the principal value (see, e.g., Titchmarsh, 1950). We will 
exploit certain properties of the Hilbert transform in connection 
with the Fourier transform F[s] of the  signal s:R → R, defi ned by

[ ]( ) ( ) ( )1
= exp d ,  

2
s s t i t t

∞

−∞
ω − ω ω∈

π ∫
F R  [3]

where F is the Fourier spectrum of s, oft en abbreviated ŝ := F[s]. 
Recall that the Fourier transform is a technique to represent a 
signal in the frequency domain and describes which portion of 
a particular frequency is contained in the signal; however, these 
frequencies ω are constant with time. In contrast, using the Hilbert 
transform will allow a frequency to be defi ned depending on time. 
Th is will be achieved by fi rst constructing from the real-valued 
given data an analytical signal that is by defi nition complex valued, 
using the Hilbert transform. For this analytical signal, then, an 
instantaneous (time-dependent) frequency can be defi ned.

To do so, we will need a few more technical facts. Together with 
the property F[1/s](ω) = −[i√(2π)]/2sign(ω) [where sign(ω):= 1 
for ω ≥ 0 and sign(ω) := −1 for ω < 0], one can show

[ ]( )( ) ( ) [ ]( ) ( ) ( ) ( )2 1
= sign ˆs s i s

s
⎡ ⎤π

ω ⎢ ⎥ ω ω = − ω ω
⎢ ⎥π ⎣ ⎦

F H F F
   

 [4]

One can also show that a function ν has the Fourier coeffi  cients 
υ̂ (ω) = (−i)sign(ω) ω̂ (ω) if and only if ν(s) = H[ω](s).

For the practical computation of the Hilbert transform, it can be 
used that for a (real-valued) signal s:R → R,

[ ]( ) ( ) ( )
0

2
= exp dˆs t s i t

∞⎡ ⎤ℑ ω ω ω⎢ ⎥⎢ ⎥π ⎣ ⎦∫H  [5]

where ℑ(z) denotes the imaginary part of a complex number z ∈ C. 
For instance, the Hilbert transform of s (t) := α + sin(ct), α ,c ∈ R 
is just H[ s ](t) = ℑ[−iexp(ict)] = cos(ct).

Th e “complexifi cation” of given (real-valued) data s:R → R can be 
achieved as follows. Denote by ν(t) := H[s](t) the Hilbert trans-
form of s and defi ne the analytical signal as

A ( ) := ( ) ( ),s t s t i t t+ υ ∈R  [6]

Note that the real part ℑ of sA recovers the original signal, i.e., 
ℑ[sA(t)] = s(t). Equation [6] ensures that the spectrum of the com-
plex-valued signal sA is zero for negative frequencies ω:

( )
( )

A
2 , 0,ˆ

=ˆ
0, < 0
s

s
⎧ ω ω≥⎪⎪ω ⎨⎪ ω⎪⎩

 [7]

Th e analytical signal sA can also be represented as

( )A ( ) = ( )exps t a t i t⎡ ⎤ϕ⎣ ⎦  [8]

with amplitude a(t) := √[s2(t) + ν2(t)] and phase ϕ(t) := 
arctan[ν (t)/s(t)]. We defi ne now the instantaneous frequency ω = 
ω(t):R → R of s as

( ) ( )d
:=

d
t t

t
ω ϕ  [9]

Specifi cally, this defi nition is consistent with the defi nition of a 
mean frequency, i.e., it satisfi es
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Aft er these preparations, we are in the position to compute instan-
taneous frequencies for the EMD of the original signal. In fact, 
recalling the additive decomposition Eq. [1] and applying the 
Hilbert transform to each of the IMF components, we obtain
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Note here that for the residual rn, its instantaneous frequency is 
irrelevant because the residual is either monotone or a constant 
that only exhibits a trend. Th us, only a possible long-term trend 
without seasonal infl uence can be obtained from it.

As intended, Eq. [11] furnishes for each component index j an 
amplitude aj(t) as well as a frequency ω j(t) depending on time. 
Comparing this with the Fourier representation of the signal, 
truncated aft er the nth term,

( ) ( ) ( )
=1

= exp
n

j j n
j

s t a i t r t
⎡ ⎤
⎢ ⎥ℜ ω +⎢ ⎥
⎢ ⎥⎣ ⎦
∑  [12]

it can be observed that the components of the latter have only con-
stant amplitude and frequency. In this sense, the EMD provides a 
generalized Fourier representation that is particularly appropriate 
for nonstationary and nonlinear data.
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We now interpret the amplitude depending on the time and the 
frequency and denote the time–frequency decomposition of the 
amplitude as the Hilbert amplitude spectrum H(ω,t). Formally, 
this is defi ned as follows. Let the signal s be represented in the form 
of Eq. [11]. Th en the Hilbert amplitude spectrum is defi ned as

( ) ( )

( ) ( ){ }

( ) ( ){ }

1 1
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Note, however, that one can also defi ne the Hilbert energy spec-
trum by taking squares of the amplitudes. In fact, “if amplitude 
squared is more desirable commonly to represent energy density, 
then the squared values of amplitude can be substituted to pro-
duce the Hilbert energy spectrum just as well” (Huang et al.,1998, 
p. 928, fourth paragraph).

In the subsequent computations below, we have chosen the Hilbert 
energy spectrum (taking squares of the amplitudes in Eq. [13]) 
because the results can be better compared with the Fourier spec-
trogram and the wavelet spectrum.

 ApplicaƟ on to Hydrologic 
Time Series Data
Th e concept described above is now applied to diff erent hydrologic 
data sets described in Bogena et al. (2005a,b).

Basic CharacterisƟ cs of the InvesƟ gaƟ on Area
Th e catchment of the Rur River was chosen as the regional investi-
gation area for the SFB/TR32 project. Th e Rur catchment covers a 
total area of 2354 km2 and is situated in western Germany. For this 
study, we selected data from three runoff  gauging stations (Dedenborn, 
Erkensruhr, and Rollesbroich) located in the southern part of the Rur 
catchment (see Fig. 4). Th e runoff  discharge was measured during a 

Fig. 4. Th e location of the runoff  gauging stations Rollesbroich, Dedenborn, and Erkensruhr and their associated catchment areas.
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period of 6940 d (roughly 20 yr between 1981 and 2001). Th e associ-
ated catchments of these stations are diff erent in size (20–200 km2) 
and exhibit varying catchment characteristics (see Table 1).

Due to the marine air fl owing in predominantly from southwest 
to northeast, a significant precipitation shadowing effect can 
be observed. Th e precipitation levels in the peak regions of the 
Rhenish Massif (“Hohes Venn”) are higher than those on the east-
ern sides (lee regions). Th erefore, the annual precipitation ranges 
between about 900 mm/yr in the northeastern part of the inves-
tigation area and about 1400 mm/yr in the southwest.

Th e investigation area belongs to the Central European low moun-
tain ranges and is dominated by Palaeozoic solid rocks of the 

Rhenish Massif formed in the course of Variscan orogenesis, which 
occupy the largest area fraction (89–96%). Holocene fl oodplain 
deposits and raised bogs occur especially within the Upper Rur River 
catchment but are of less importance (3–10%). Th e Upper Rur River 
comprises also a signifi cantly proportion of raised bogs (29%). Th e 
catchment areas of the Upper Rur and Kall rivers are predominated 
by pastures, whereas the Erkensruhr River is characterized by forest, 
leading to signifi cant lower mean annual runoff  compared with the 
other catchments (100 and 190 mm/yr, respectively).

Figure 5 shows the runoff  discharge of all catchments for the period 
of 1982 to 1999 on a daily basis. Th e general runoff  characteristic 
is very similar for all catchments. Th e highest peak fl ows have been 
recorded during winter, whereas during summer, low fl ow conditions 

Table 1. Basic characteristics of the catchment areas.

 Characteristic  Upper Rur River  Kall River  Erkensruhr River 

Gauging station  Dedenborn  Rollesbroich  Erkensruhr 

Area, km2 199.7 19.03 41.7

Mean elevation, m 553 532 526

Mean slope, ° 36.4 17.3 32.1

Land use, % (2001) urban, 2; arable land, 4; grassland, 
35; raised bogs, 29; forest, 30 

urban, 3;arable land, 13; 
grassland, 45; forest, 39 

urban, <1; arable land, 10; 
grassland, 16; forest, 74 

Geology, % Palaeozoic, 89; Pleistocene, 1; Holocene, 10 Palaeozoic, 94; Holocene, 6 Palaeozoic, 96; Pleistocene, 1; Holocene, 3 

Annual precipitation, 
mm/yr (1979–1999) 

mean, 1042; min., 908; max., 1413 mean, 1200; min., 1133; max., 1266 mean, 1081; min., 932;
max., 1219

Annual runoff , mm/yr 793 733 633

Daily sampling interval  1961–2000  1982–2000 1961–2000

Fig. 5. Runoff  discharge data from 1982 to 1999 from the Rollesbroich, Dedenborn, and Erkensruhr gauging stations.
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are common. Th e maximum runoff  was recorded on 22 Dec. 1991 
(Rollesbroich, 41.34 mm/d), whereas one of the lowest runoff s from 
1990 to 1999 was recorded on 11 July 1993 (0.0023 mm/d). Because 
it contains the highest and one of the lowest runoff s, we selected 
the period from 1991 to 1993 to present the runoff  data in more 
detail (Fig. 6). From Fig. 6 it becomes apparent that the runoff  from 
the Kall River (Rollesbroich gauging station) shows more peaks as 
a result of the smaller catchment area. Th e runoff  from the Upper 
Rur River (Dedenborn gauging station) is to some extent damped 
due the presence of a small water reservoir (see Fig. 4).

Th e current study is meant as a preliminary study for the data analy-
sis of a dense soil moisture sensor network for monitoring soil water 
content changes at high spatial and temporal scales; for a description 
of the currently used soil moisture network and measurement devices, 
see Bogena et al. (2007, 2009, 2010) and Rosenbaum et al. (2010).

ComputaƟ on of the Empirical 
Mode DecomposiƟ on
For the three data sets and diff erent time ranges, we have computed 
the corresponding EMDs. Th e result for the Dedenborn data set 
in the time range 1990 to 1999 can be seen below; all the others 
can be found in Rudi (2010).

Figure 7 presents the fi rst three IMF amplitudes for all catchments 
together with the original runoff  discharge data for the 1991 to 
1993 time range. (Note that the IMF amplitudes a1(t), …, a3(t) 
diff er from the IMFs imf1(t), …, imf3(t) in Eq. [1]). We can make 
the following observations. Th e runoff  peaks produce at most 
times high IMF amplitude values, especially for imf1, which is the 

portion of the signal corresponding to the highest frequencies. Th e 
extreme event of 22 Dec. 1991 produced very distinct amplitude 
peaks for imf1, imf2, and imf3 and is clearly visible in all three data 
sets. Low fl ow periods mostly are accompanied by low amplitudes 
for imf1, imf2, and imf3, sometimes with distinct negative peaks.

Figure 8 shows the diff erences between the diff erent IMF ampli-
tudes for all catchments. In all graphics, we can observe a very 
similar behavior of each of the IMF amplitudes for the three 
stations together, indicating that their close proximity produces 
similar runoff  patterns. Th eir absolute values are diff erent, however, 
due to higher values of the Dedenborn data (red curve). We also see 
that the location of extreme points of the three IMF amplitudes, 
such as at 21 Dec. 1991 or at 9 Jan. 1993, coincide. We can also 
see seasonal components from these amplitudes as well as from 
the original data: decreasing values in spring with lower values 
during summer and aft erward increasing amplitudes, resulting in 
the highest amplitudes in December or January of each year.

Once the EMD is computed as in Fig. 9, an approximation of the 
original data can be defi ned as follows. Because the EMD is an exact 
additive representation of the signal, the fi rst IMFs in the representa-
tion Eq. [1], containing the high frequencies, can be skipped. A coarse 
approximation to the original data can then be defi ned by setting

( ) ( ) ( )
=

:= imf
n

j n
j m

s t t r t+∑  [14]

Fig. 6. Runoff  discharge data from 1991 to 1993 from the Rollesbroich, Dedenborn, and Erkensruhr gauging stations.
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where m > 1 stands for the IMF with the lowest index. Frequencies 
should be taken into account from this index onward. Because this 
approximation contains all the relevant information but much less 
data because the high-frequency components have been taken out, 
this representation may be used for further processing within a 
model for parameterization.

 Results and Discussion
Diff erent Spectra
We now compare the Hilbert energy spectrum as defi ned above 
with other spectra. For this, we have fi rst used the Dedenborn data 

Fig. 7. Runoff  discharge data from 1991 to 1993 from the three gauging stations compared with intrinsic mode function (IMF) amplitudes 1, 2, and 3: 
(A) Dedenborn, (B) Rollesbroich, and (C) Erkensruhr.
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from 1990 to 1999 displayed in Fig. 9A. Th e corresponding EMD 
is shown in Fig. 9B.

Th e corresponding Hilbert energy spectrum is shown in Fig. 10A. 
Th e ordinate axis displays the time period of the corresponding fre-
quencies in days on a logarithmic scale, and the strength of the colors 
reveal the energy (i.e., the value of the amplitude squared) according 

to the values shown on the right. Th e Hilbert spectrum, therefore, 
shows the distribution of the squares of the amplitudes and frequency 
as functions of time. Figures 10B and 10C display the wavelet energy 
spectrum using the continuous wavelet transform with the Morlet 
wavelet and the Mexican hat wavelet, respectively. Figure 10D is the 
spectrogram using the short-time (or windowed) Fourier transform 

Fig. 8. Comparison of intrinsic mode function (IMF) amplitudes for all catchments: (A) imf1, (B) imf2, and (C) imf3.
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(STFT) with a window width of 64 measured data values. All spectra 
are energy spectra with a linear scale of the colors.

Th e same computations were made with an enlargement of the 
Dedenborn data for the time period 1991 to 1993 in Fig. 11 and 12.

In the comparison in Fig. 10 between the Hilbert energy spectrum 
and the Fourier spectrogram, we see a much more localized behav-
ior of the Hilbert energy spectrum. Moreover, in comparison with 
the wavelet spectra, the Fourier spectrogram even seems to empha-
size regions of importance such as in 1994 or 1995 where the other 
spectra are not so dominant. In addition, the Fourier spectrogram 
fails to provide information for periods essentially smaller than 16 d. 
Th is eff ect is even more visible in Fig. 12 between the beginning of 
1992 and 1993, or around February 1993—here the STFT exhibits 

features that the other spectra do not show so that we can conclude 
that they may be faulty. For these reasons, we will not consider the 
STFT in subsequent comparisons. In Fig. 10, boundary eff ects can 
clearly be detected for the two wavelet transforms due to their peri-
odic nature. Th is cannot be seen for the Hilbert energy spectrum.

We further enlarge the Dedenborn original data centered at the 
extreme event of 22 Dec. 1991 with visualization of period lengths, 
for which we show the Hilbert energy spectrum and two wavelet 
spectra in Fig. 13. Th e Hilbert energy spectrum shows a very clear 
and quite unusual nonlinear pattern while the two wavelet spectra 
essentially just exhibit the location. It is remarkable that both these 
spectra display high amplitude values only for periods <64 d while 
the Hilbert energy spectrum shows high amplitudes also for periods 
up to 256 d.

Fig. 9. Dedenborn site: (A) original data from 1990 to 1999, and (B) empirical mode decomposition into intrinsic mode functions (IMF) and residual.
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Finally, we show in Fig. 14 the Hilbert energy spectra for all three 
sites together for the sample period 1991 to 1993. Th ese have been 
scaled so that they display the same energy. It is apparent that all 
three of them exhibit the same patterns at the same locations. Th e 
higher values for Dedenborn account for higher values in the energy 
at the end of 1991.

It is apparent that the Hilbert energy spectra show very local-
ized information that is even stronger than the wavelet spectra; 
the latter have a tendency to smear out, especially for increasing 
periods >64 d. Seasonal components with strong peaks in their 
energies around the turn of the years are most apparent for the 
Hilbert energy spectrum in Fig. 14.

Fig. 10. Dedenborn site data from 1990 to 1999: (A) Hilbert energy spectrum of the Hilbert –Huang transform (HHT), (B) Morlet and (C) Mexican 
hat wavelet spectra, and (D) Fourier spectrogram.
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Th e Hilbert energy spectrum clearly shows certain periodic appear-
ances of similar horizontal distances that can be interpreted as years 
and seasons. Th e strength of the amplitudes, visualized by the diff erent 
colors, indicate diff erent amounts of drainage with time. From this, a 
time-dependent impact of higher amounts of data can be derived. We 
have displayed in Fig. 10 and 12 a comparison between the Hilbert 
spectrum and the Fourier spectrogram for details of the Dedenborn 
data. It can be seen that the Hilbert spectrum provides much more 
localized spectrum information than the short-time Fourier trans-
form. Th is eff ect apparently becomes stronger the more one zooms 
into the data. In this way, one can interpret the Fourier spectrogram as 
a strongly “smeared-out” version of the Hilbert spectrum. Even when 
compared with wavelet spectra using continuous wavelet transforms, 
the Hilbert energy spectrum exhibits a stronger localized and less 
smeared-out energy.

Moreover, the Hilbert energy spectra of the three measurement 
stations in Fig. 14 appear very similar, indicating little local vari-
ability in drainage.

All computations of the EMD and the HHT spectra have been 
performed in Matlab, Version 7.9.0 (Th e MathWorks, Natick, MA). 
Th e Fourier spectrograms using the short-time Fourier transform 
were generated with the spectrogram function of the Matlab Signal 

Processing Toolbox. Th e continuous wavelet transforms using the 
Morlet and the Mexican hat wavelets have been implemented using 
the Matlab Wavelet Toolbox according to the guide to wavelet analysis 
by Torrence and Compo (1998). All programs were written by Johann 
Rudi. More data and comparisons can be found in Rudi (2010).

 Conclusions and Future Work
Th e HHT method presented here provides a refi ned analysis of hydro-
logic data when compared with classical Fourier analysis and wavelet 
analysis. Specifi cally, the possibility of introducing a time-dependent 
frequency and the computation of a localized time–frequency spec-
trum provides seasonal components together with their energies. 
Compared with wavelet spectra using continuous wavelet transforms 
or with Fourier spectrograms, the Hilbert energy spectrum exhibits 
a stronger localized and less smeared-out energy.

Because the EMD provides an additive decomposition of the 
original data, the diff erent IMFs display diff erent portions of 
the measured data with time-dependent frequencies that become 
larger for larger indices j. Clearly, a coarse approximation of the 
data could be obtained by summing only the IMFs for, say, j ≥ 3. 
In view of the detection and the parameterization of multiscale 
patterns and shapes, the method presented here provides a way to 

Fig. 11. Dedenborn site: (A) original data from 1990 to 1999, and (B) empirical mode decomposition into intrinsic mode functions (IMF) and residual.
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characterize the data set consisting of thousands of data points 
in terms of very few parameters (years and seasonal components 
and the distribution of their amplitudes and their energies). Th ese 
may then be utilized in the numerical simulation models for fl uxes.

Although the method has proved to be successful in many appli-
cations and has perhaps provided more insight into the data than 
conventional methods, it should be mentioned that theoretical 
aspects of the EMD, like a mathematical convergence theory, the 
complexity of the iterative scheme in terms of fl oating point opera-
tions, or the appropriate handling of boundary data is still not 

understood. For the complexity issue, the problem is the EMD 
algorithm, which is based on two nested iterations (see above). 
Both need the specifi cation of thresholding parameters to ter-
minate the iterations. Th e diffi  culty of an appropriate choice of 
these parameters has been discussed before, e.g., in Huang and 
Shen (2005, p. 8–9). It has been observed by us and others that a 
slightly diff erent choice of these thresholding parameters may yield 
a quite diff erent number of IMFs and also diff erent patterns of 
these. Accordingly, the total amount of outer and inner iterations 
cannot be determined beforehand and, in the worst case, the algo-
rithm may not converge at all. To overcome the parameter choice in 

Fig. 12. Dedenborn site data from 1991 to 1993: (A) Hilbert energy spectrum of the Hilbert –Huang transform (HHT), (B) Morlet and (C) Mexican 
hat wavelet spectra, and (D) Fourier spectrogram.
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the sift ing process, an alternative that works with linear function-
als for B splines instead of upper and lower hulls of the data and 
that is cheaper to compute was proposed in Chen et al. (2006) and 
further elaborated in Koch (2008) and Jager et al. (2010).

Of course, once the EMD is determined, the complexity of com-
puting the Hilbert spectrum can be determined easily because it 

just requires application of the fast Fourier transform. First steps 
were undertaken toward a theoretical understanding of the overall 
HHT process in Sharpley and Vatchev (2006).

When it comes to the analysis of multivariate data sets, the EMD 
process can become numerically quite expensive or even pro-
hibitive for space dimensions n ≥ 3. Diff erent approaches for the 

Fig. 13. Dedenborn site: original data centered at 22 Dec. 1991 with (A) visualization of period lengths, (B) Hilbert energy spectrum, and (C) Morlet 
and (D) Mexican hat wavelet spectra.
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two-dimensional case based on fi nite elements on Delaunay trian-
gulations or thin plate splines or (in the univariate case) by solving 
a time-dependent partial diff erential equation have been proposed 
by Deléchelle et al. (2005), Damerval et al. (2005), and Xu et al. 
(2006). A systematic comparison for the two-dimensional case that 
focuses on the quality of the EMD and the numerical performance 
was given in Koch (2008) and Jager et al. (2010). Specifi cally, a 
new method based on adaptive spline wavelets was proposed that 
ultimately yields the best results when it comes to the quality of 
the EMD and the speed of the computations. Equally important, 
an analysis of the theoretical setup for the general, n-dimensional 
case by means of Cliff ord algebra and monogenic functions, and a 
defi nition of a generalized Hilbert transform for the multivariate 
case, was provided.

We applied the EMD methodology to compare long-term daily 
runoff  discharge measurements taken from three rivers of very 
different size. We demonstrated that these time series can be 

successfully separated into several IMF modes. Th e runoff  peaks 
mostly resulted in high IMF amplitude values, especially for imf1, 
which is the portion of the signal corresponding to the highest 
frequencies. Extreme events produced also distinct amplitude 
peaks for imf2 and imf3. In contrast, low-fl ow periods are usually 
accompanied by low amplitudes for imf1, imf2, and imf3, some-
times even with distinct negative peaks. Th e similarity of the IMF 
modes indicate a similar runoff  pattern due the close locality and 
similar environmental setting of the catchments. Because Huang 
et al. (2009) also were able to apply the EMD methodology for 
hydrologic time series data, we are confi dent that the EMD will 
also be useful for the analysis of other time series data that are simi-
lar to runoff  data (e.g., soil moisture). Furthermore, EMD should 
also be helpful for the validation of rainfall–runoff  models, which 
has already been demonstrated for the wavelet domain by Schaefl i 
and Zehe (2009). Th e next step will be to use the HHT method 
for the scale-dependent characterization of soil moisture patterns 
as measured by the sensor network deployed in the framework of 
the TR32 project (Bogena et al., 2010).

Fig. 14. Hilbert energy spectra of the Hilbert–Huang transform (HHT) with the same energy scaling for the Dedenborn, Erkensruhr, and Rollesbroich 
gauging stations from 1991 to 1993.
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